Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000240930> ?p ?o ?g. }
- W2000240930 endingPage "429" @default.
- W2000240930 startingPage "420" @default.
- W2000240930 abstract "The authors evaluated the effect of optimal neural network architecture selection on the performance of a computer-aided diagnostic system designed to detect microcalcification clusters on digitized mammograms.The authors developed a computer program to detect microcalcification clusters automatically on digitized mammograms. Previously, they found that a properly selected and trained convolution neural network (CNN) could reduce false-positive (FP) findings and therefore improve the accuracy of microcalcification detection. In the current study, they evaluated the effectiveness of the CNN optimized with an automated optimization technique in improving the accuracy of the microcalcification detection program, comparing it with the manually selected CNN. An independent test data set was used, which included 472 mammograms selected from the University of South Florida public database and contained 253 biopsy-proved malignant clusters.At an FP rate of 0.7 cluster per image, the film-based sensitivity was 84.6% for the optimized CNN, compared with 77.2% for the manually selected CNN. For clusters imaged on both craniocaudal and mediolateral oblique views, a cluster could be considered detected when it was detected on one or both views. For this case-based approach, at an FP rate of 0.7 per image, the sensitivity was 93.3% for the optimized and 87.0% for the manually selected CNN.The classification of true and false signals is an important step in the microcalcification detection program. An optimized CNN can effectively reduce FP findings and improve the accuracy of the computer-aided detection system." @default.
- W2000240930 created "2016-06-24" @default.
- W2000240930 creator A5006593300 @default.
- W2000240930 creator A5027247097 @default.
- W2000240930 creator A5073468417 @default.
- W2000240930 creator A5073769753 @default.
- W2000240930 creator A5077316017 @default.
- W2000240930 creator A5087281080 @default.
- W2000240930 date "2002-04-01" @default.
- W2000240930 modified "2023-10-14" @default.
- W2000240930 title "Optimal Neural Network Architecture Selection" @default.
- W2000240930 cites W1908907049 @default.
- W2000240930 cites W1978469498 @default.
- W2000240930 cites W1988452762 @default.
- W2000240930 cites W1992337168 @default.
- W2000240930 cites W2001180220 @default.
- W2000240930 cites W2014408515 @default.
- W2000240930 cites W2017387114 @default.
- W2000240930 cites W2030622127 @default.
- W2000240930 cites W2063217105 @default.
- W2000240930 cites W2072571454 @default.
- W2000240930 cites W2078710233 @default.
- W2000240930 cites W2084656440 @default.
- W2000240930 cites W2085223821 @default.
- W2000240930 cites W2086127902 @default.
- W2000240930 cites W2092782056 @default.
- W2000240930 cites W2098985260 @default.
- W2000240930 cites W2112525988 @default.
- W2000240930 cites W2113115183 @default.
- W2000240930 cites W2114248549 @default.
- W2000240930 cites W2145283065 @default.
- W2000240930 cites W2172182746 @default.
- W2000240930 cites W2256679588 @default.
- W2000240930 doi "https://doi.org/10.1016/s1076-6332(03)80187-3" @default.
- W2000240930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11942656" @default.
- W2000240930 hasPublicationYear "2002" @default.
- W2000240930 type Work @default.
- W2000240930 sameAs 2000240930 @default.
- W2000240930 citedByCount "63" @default.
- W2000240930 countsByYear W20002409302012 @default.
- W2000240930 countsByYear W20002409302013 @default.
- W2000240930 countsByYear W20002409302014 @default.
- W2000240930 countsByYear W20002409302015 @default.
- W2000240930 countsByYear W20002409302016 @default.
- W2000240930 countsByYear W20002409302017 @default.
- W2000240930 countsByYear W20002409302018 @default.
- W2000240930 countsByYear W20002409302019 @default.
- W2000240930 countsByYear W20002409302020 @default.
- W2000240930 countsByYear W20002409302022 @default.
- W2000240930 countsByYear W20002409302023 @default.
- W2000240930 crossrefType "journal-article" @default.
- W2000240930 hasAuthorship W2000240930A5006593300 @default.
- W2000240930 hasAuthorship W2000240930A5027247097 @default.
- W2000240930 hasAuthorship W2000240930A5073468417 @default.
- W2000240930 hasAuthorship W2000240930A5073769753 @default.
- W2000240930 hasAuthorship W2000240930A5077316017 @default.
- W2000240930 hasAuthorship W2000240930A5087281080 @default.
- W2000240930 hasConcept C121608353 @default.
- W2000240930 hasConcept C126322002 @default.
- W2000240930 hasConcept C127413603 @default.
- W2000240930 hasConcept C153180895 @default.
- W2000240930 hasConcept C154945302 @default.
- W2000240930 hasConcept C169903167 @default.
- W2000240930 hasConcept C177264268 @default.
- W2000240930 hasConcept C199360897 @default.
- W2000240930 hasConcept C21200559 @default.
- W2000240930 hasConcept C24326235 @default.
- W2000240930 hasConcept C2779549770 @default.
- W2000240930 hasConcept C2780472235 @default.
- W2000240930 hasConcept C2781129008 @default.
- W2000240930 hasConcept C31972630 @default.
- W2000240930 hasConcept C41008148 @default.
- W2000240930 hasConcept C50644808 @default.
- W2000240930 hasConcept C530470458 @default.
- W2000240930 hasConcept C58489278 @default.
- W2000240930 hasConcept C71924100 @default.
- W2000240930 hasConcept C81363708 @default.
- W2000240930 hasConcept C81917197 @default.
- W2000240930 hasConceptScore W2000240930C121608353 @default.
- W2000240930 hasConceptScore W2000240930C126322002 @default.
- W2000240930 hasConceptScore W2000240930C127413603 @default.
- W2000240930 hasConceptScore W2000240930C153180895 @default.
- W2000240930 hasConceptScore W2000240930C154945302 @default.
- W2000240930 hasConceptScore W2000240930C169903167 @default.
- W2000240930 hasConceptScore W2000240930C177264268 @default.
- W2000240930 hasConceptScore W2000240930C199360897 @default.
- W2000240930 hasConceptScore W2000240930C21200559 @default.
- W2000240930 hasConceptScore W2000240930C24326235 @default.
- W2000240930 hasConceptScore W2000240930C2779549770 @default.
- W2000240930 hasConceptScore W2000240930C2780472235 @default.
- W2000240930 hasConceptScore W2000240930C2781129008 @default.
- W2000240930 hasConceptScore W2000240930C31972630 @default.
- W2000240930 hasConceptScore W2000240930C41008148 @default.
- W2000240930 hasConceptScore W2000240930C50644808 @default.
- W2000240930 hasConceptScore W2000240930C530470458 @default.
- W2000240930 hasConceptScore W2000240930C58489278 @default.
- W2000240930 hasConceptScore W2000240930C71924100 @default.
- W2000240930 hasConceptScore W2000240930C81363708 @default.