Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000244138> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2000244138 abstract "Using crowdsourcing for gathering labels can be beneficial for supervised machine learning, if done in the right way. Crowdsourcing is more cost-effective and faster than employing experts for labeling the items needed as training examples. Unfortunately, the crowd produced labels are not always of a comparable quality. Therefore, different methods could be employed in order to assure label quality. One of them is redundancy, by gathering more than one label per item, from different assessors. In this paper we introduce a novel method for aggregating multiple crowdsourced binary labels, taking into account the worker's history and how well the worker agrees with the aggregated label. According to previously solved tasks, the worker expertise, or the confidence we have in his labels can be assessed. The computation of the aggregated crowd label is mutually reinforced by the assessment of the worker confidence. Besides a method for computing a hard nominal aggregated label, we also propose a soft label as an indicator of how much the labelers agree and how strong their labels are. Furthermore, we investigate whether or not worker confidence should depend on the provided label, whether discriminating between positive and negative answer quality can be beneficial. We evaluate our method on multiple datasets, covering different domains and label gathering strategies. Moreover, we compare against other state of the art methods, showing the effectiveness of our proposed approach." @default.
- W2000244138 created "2016-06-24" @default.
- W2000244138 creator A5021268896 @default.
- W2000244138 creator A5057095068 @default.
- W2000244138 date "2014-06-02" @default.
- W2000244138 modified "2023-09-27" @default.
- W2000244138 title "Aggregation of Crowdsourced Labels Based on Worker History" @default.
- W2000244138 cites W1497983610 @default.
- W2000244138 cites W1938221098 @default.
- W2000244138 cites W1979483312 @default.
- W2000244138 cites W2006471615 @default.
- W2000244138 cites W2022363284 @default.
- W2000244138 cites W2044945272 @default.
- W2000244138 cites W2050867684 @default.
- W2000244138 cites W2055601365 @default.
- W2000244138 cites W2056997037 @default.
- W2000244138 cites W2066640191 @default.
- W2000244138 cites W2096519149 @default.
- W2000244138 cites W2098865355 @default.
- W2000244138 cites W2107756083 @default.
- W2000244138 cites W2108216421 @default.
- W2000244138 cites W2113878109 @default.
- W2000244138 cites W2125943921 @default.
- W2000244138 cites W2134305421 @default.
- W2000244138 cites W2145492473 @default.
- W2000244138 cites W2168144930 @default.
- W2000244138 cites W9014458 @default.
- W2000244138 doi "https://doi.org/10.1145/2611040.2611074" @default.
- W2000244138 hasPublicationYear "2014" @default.
- W2000244138 type Work @default.
- W2000244138 sameAs 2000244138 @default.
- W2000244138 citedByCount "15" @default.
- W2000244138 countsByYear W20002441382014 @default.
- W2000244138 countsByYear W20002441382015 @default.
- W2000244138 countsByYear W20002441382017 @default.
- W2000244138 countsByYear W20002441382018 @default.
- W2000244138 countsByYear W20002441382020 @default.
- W2000244138 countsByYear W20002441382021 @default.
- W2000244138 crossrefType "proceedings-article" @default.
- W2000244138 hasAuthorship W2000244138A5021268896 @default.
- W2000244138 hasAuthorship W2000244138A5057095068 @default.
- W2000244138 hasConcept C111472728 @default.
- W2000244138 hasConcept C111919701 @default.
- W2000244138 hasConcept C11413529 @default.
- W2000244138 hasConcept C119857082 @default.
- W2000244138 hasConcept C124101348 @default.
- W2000244138 hasConcept C136764020 @default.
- W2000244138 hasConcept C138885662 @default.
- W2000244138 hasConcept C152124472 @default.
- W2000244138 hasConcept C154945302 @default.
- W2000244138 hasConcept C2779530757 @default.
- W2000244138 hasConcept C41008148 @default.
- W2000244138 hasConcept C45374587 @default.
- W2000244138 hasConcept C51632099 @default.
- W2000244138 hasConcept C62230096 @default.
- W2000244138 hasConceptScore W2000244138C111472728 @default.
- W2000244138 hasConceptScore W2000244138C111919701 @default.
- W2000244138 hasConceptScore W2000244138C11413529 @default.
- W2000244138 hasConceptScore W2000244138C119857082 @default.
- W2000244138 hasConceptScore W2000244138C124101348 @default.
- W2000244138 hasConceptScore W2000244138C136764020 @default.
- W2000244138 hasConceptScore W2000244138C138885662 @default.
- W2000244138 hasConceptScore W2000244138C152124472 @default.
- W2000244138 hasConceptScore W2000244138C154945302 @default.
- W2000244138 hasConceptScore W2000244138C2779530757 @default.
- W2000244138 hasConceptScore W2000244138C41008148 @default.
- W2000244138 hasConceptScore W2000244138C45374587 @default.
- W2000244138 hasConceptScore W2000244138C51632099 @default.
- W2000244138 hasConceptScore W2000244138C62230096 @default.
- W2000244138 hasLocation W20002441381 @default.
- W2000244138 hasOpenAccess W2000244138 @default.
- W2000244138 hasPrimaryLocation W20002441381 @default.
- W2000244138 hasRelatedWork W1617082848 @default.
- W2000244138 hasRelatedWork W1942954136 @default.
- W2000244138 hasRelatedWork W2321826012 @default.
- W2000244138 hasRelatedWork W2606084229 @default.
- W2000244138 hasRelatedWork W2806138827 @default.
- W2000244138 hasRelatedWork W2949067929 @default.
- W2000244138 hasRelatedWork W4281992143 @default.
- W2000244138 hasRelatedWork W4300980321 @default.
- W2000244138 hasRelatedWork W4312235993 @default.
- W2000244138 hasRelatedWork W82775311 @default.
- W2000244138 isParatext "false" @default.
- W2000244138 isRetracted "false" @default.
- W2000244138 magId "2000244138" @default.
- W2000244138 workType "article" @default.