Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000259142> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2000259142 endingPage "54" @default.
- W2000259142 startingPage "23" @default.
- W2000259142 abstract "AbstractThis article presents a Bayesian method for estimating nonparametrically a highdimensional multinomial regression model. The regression functions are expressed as sums of main effects and interactions and our approach is able to select the significant components entering the model. Each of the main effects and interactions is written as a linear combination of basis terms with a variance components type prior on the regression coefficients. The conditional class probabilities are estimated using both variable selection and model averaging. Our approach can also be used for classification and gives results that are comparable to modern classification methods, but at the same time the results are highly interpretable to the practitioner. All computation is carried out using Markov chain Monte Carlo simulation.Key Words: ClassificationMarkov chain Monte CarloRadial basis functions" @default.
- W2000259142 created "2016-06-24" @default.
- W2000259142 creator A5022139798 @default.
- W2000259142 creator A5023547790 @default.
- W2000259142 creator A5051693933 @default.
- W2000259142 date "2003-03-01" @default.
- W2000259142 modified "2023-10-14" @default.
- W2000259142 title "Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression" @default.
- W2000259142 cites W156498718 @default.
- W2000259142 cites W1813388215 @default.
- W2000259142 cites W1967227158 @default.
- W2000259142 cites W1969557815 @default.
- W2000259142 cites W1981025032 @default.
- W2000259142 cites W1990420052 @default.
- W2000259142 cites W2008843339 @default.
- W2000259142 cites W2024046085 @default.
- W2000259142 cites W2085240067 @default.
- W2000259142 cites W2107461594 @default.
- W2000259142 cites W2128860595 @default.
- W2000259142 cites W2158071659 @default.
- W2000259142 cites W2162240567 @default.
- W2000259142 cites W2166624680 @default.
- W2000259142 cites W4229849994 @default.
- W2000259142 cites W4240449949 @default.
- W2000259142 cites W4242889873 @default.
- W2000259142 cites W4245279681 @default.
- W2000259142 cites W4254147434 @default.
- W2000259142 doi "https://doi.org/10.1198/1061860031301" @default.
- W2000259142 hasPublicationYear "2003" @default.
- W2000259142 type Work @default.
- W2000259142 sameAs 2000259142 @default.
- W2000259142 citedByCount "47" @default.
- W2000259142 countsByYear W20002591422012 @default.
- W2000259142 countsByYear W20002591422013 @default.
- W2000259142 countsByYear W20002591422014 @default.
- W2000259142 countsByYear W20002591422015 @default.
- W2000259142 countsByYear W20002591422016 @default.
- W2000259142 countsByYear W20002591422017 @default.
- W2000259142 countsByYear W20002591422018 @default.
- W2000259142 countsByYear W20002591422020 @default.
- W2000259142 countsByYear W20002591422021 @default.
- W2000259142 countsByYear W20002591422022 @default.
- W2000259142 crossrefType "journal-article" @default.
- W2000259142 hasAuthorship W2000259142A5022139798 @default.
- W2000259142 hasAuthorship W2000259142A5023547790 @default.
- W2000259142 hasAuthorship W2000259142A5051693933 @default.
- W2000259142 hasConcept C105795698 @default.
- W2000259142 hasConcept C107673813 @default.
- W2000259142 hasConcept C111350023 @default.
- W2000259142 hasConcept C117568660 @default.
- W2000259142 hasConcept C148483581 @default.
- W2000259142 hasConcept C152877465 @default.
- W2000259142 hasConcept C154945302 @default.
- W2000259142 hasConcept C192065140 @default.
- W2000259142 hasConcept C33923547 @default.
- W2000259142 hasConcept C41008148 @default.
- W2000259142 hasConcept C74127309 @default.
- W2000259142 hasConcept C93959086 @default.
- W2000259142 hasConceptScore W2000259142C105795698 @default.
- W2000259142 hasConceptScore W2000259142C107673813 @default.
- W2000259142 hasConceptScore W2000259142C111350023 @default.
- W2000259142 hasConceptScore W2000259142C117568660 @default.
- W2000259142 hasConceptScore W2000259142C148483581 @default.
- W2000259142 hasConceptScore W2000259142C152877465 @default.
- W2000259142 hasConceptScore W2000259142C154945302 @default.
- W2000259142 hasConceptScore W2000259142C192065140 @default.
- W2000259142 hasConceptScore W2000259142C33923547 @default.
- W2000259142 hasConceptScore W2000259142C41008148 @default.
- W2000259142 hasConceptScore W2000259142C74127309 @default.
- W2000259142 hasConceptScore W2000259142C93959086 @default.
- W2000259142 hasIssue "1" @default.
- W2000259142 hasLocation W20002591421 @default.
- W2000259142 hasOpenAccess W2000259142 @default.
- W2000259142 hasPrimaryLocation W20002591421 @default.
- W2000259142 hasRelatedWork W1477104975 @default.
- W2000259142 hasRelatedWork W2188234385 @default.
- W2000259142 hasRelatedWork W2494119046 @default.
- W2000259142 hasRelatedWork W2784774275 @default.
- W2000259142 hasRelatedWork W2949363319 @default.
- W2000259142 hasRelatedWork W2951984331 @default.
- W2000259142 hasRelatedWork W2955220190 @default.
- W2000259142 hasRelatedWork W4299965069 @default.
- W2000259142 hasRelatedWork W1917858188 @default.
- W2000259142 hasRelatedWork W2184978910 @default.
- W2000259142 hasVolume "12" @default.
- W2000259142 isParatext "false" @default.
- W2000259142 isRetracted "false" @default.
- W2000259142 magId "2000259142" @default.
- W2000259142 workType "article" @default.