Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000262795> ?p ?o ?g. }
- W2000262795 endingPage "948" @default.
- W2000262795 startingPage "941" @default.
- W2000262795 abstract "Abstract BACKGROUND: Biofilters are efficient systems for treating malodorous emissions. The mechanism involved during pollutant transfer and subsequent biotransformation within a biofilm is a complex process. The use of artificial neural networks to model the performance of biofilters using easily measurable state variables appears to be an effective alternative to conventional phenomenological modelling. RESULTS: An artificial neural network model was used to predict the extent of styrene removal in a perlite‐biofilter inoculated with a mixed microbial culture. After a 43 day biofilter acclimation period, styrene removal experiments were carried out by subjecting the bioreactor to different flow rates (0.15–0.9 m 3 h −1 ) and concentrations (0.5–17.2 g m −3 ), that correspond to inlet loading rates up to 1390 g m −3 h −1 . During the different phases of continuous biofilter operation, greater than 92% styrene removal was achievable for loading rates up to 250 g m −3 h −1 . A back propagation neural network algorithm was applied to model and predict the removal efficiency (%) of this process using inlet concentration (g m −3 ) and unit flow (h −1 ) as input variables. The data points were divided into training (115 × 3) and testing set (42 × 3). The most reliable condition for the network was selected by a trial and error approach and by estimating the determination coefficient ( R 2 ) value (0.98) achieved during prediction of the testing set. CONCLUSION: The results showed that a simple neural network based model with a topology of 2–4–1 was able to efficiently predict the styrene removal performance in the biofilter. Through sensitivity analysis, the most influential input parameter affecting styrene removal was ascertained to be the flow rate. Copyright © 2009 Society of Chemical Industry" @default.
- W2000262795 created "2016-06-24" @default.
- W2000262795 creator A5011699775 @default.
- W2000262795 creator A5024376941 @default.
- W2000262795 creator A5053414036 @default.
- W2000262795 date "2009-02-02" @default.
- W2000262795 modified "2023-10-10" @default.
- W2000262795 title "Experimental and neural model analysis of styrene removal from polluted air in a biofilter" @default.
- W2000262795 cites W1498436455 @default.
- W2000262795 cites W1969549573 @default.
- W2000262795 cites W1972518794 @default.
- W2000262795 cites W1978127050 @default.
- W2000262795 cites W1992978542 @default.
- W2000262795 cites W2010955826 @default.
- W2000262795 cites W2024944277 @default.
- W2000262795 cites W2033404760 @default.
- W2000262795 cites W2036599383 @default.
- W2000262795 cites W2040179209 @default.
- W2000262795 cites W2046099347 @default.
- W2000262795 cites W2048198926 @default.
- W2000262795 cites W2056711343 @default.
- W2000262795 cites W2057788866 @default.
- W2000262795 cites W2078659027 @default.
- W2000262795 cites W2099945397 @default.
- W2000262795 cites W2104023170 @default.
- W2000262795 cites W2115915731 @default.
- W2000262795 cites W2126461062 @default.
- W2000262795 cites W2137983211 @default.
- W2000262795 cites W2146044905 @default.
- W2000262795 cites W2155356361 @default.
- W2000262795 cites W2156275147 @default.
- W2000262795 cites W2171509010 @default.
- W2000262795 cites W2480812006 @default.
- W2000262795 cites W4245422202 @default.
- W2000262795 doi "https://doi.org/10.1002/jctb.2130" @default.
- W2000262795 hasPublicationYear "2009" @default.
- W2000262795 type Work @default.
- W2000262795 sameAs 2000262795 @default.
- W2000262795 citedByCount "49" @default.
- W2000262795 countsByYear W20002627952012 @default.
- W2000262795 countsByYear W20002627952013 @default.
- W2000262795 countsByYear W20002627952014 @default.
- W2000262795 countsByYear W20002627952015 @default.
- W2000262795 countsByYear W20002627952016 @default.
- W2000262795 countsByYear W20002627952017 @default.
- W2000262795 countsByYear W20002627952018 @default.
- W2000262795 countsByYear W20002627952020 @default.
- W2000262795 countsByYear W20002627952021 @default.
- W2000262795 countsByYear W20002627952022 @default.
- W2000262795 countsByYear W20002627952023 @default.
- W2000262795 crossrefType "journal-article" @default.
- W2000262795 hasAuthorship W2000262795A5011699775 @default.
- W2000262795 hasAuthorship W2000262795A5024376941 @default.
- W2000262795 hasAuthorship W2000262795A5053414036 @default.
- W2000262795 hasBestOaLocation W20002627952 @default.
- W2000262795 hasConcept C106131492 @default.
- W2000262795 hasConcept C119599485 @default.
- W2000262795 hasConcept C121332964 @default.
- W2000262795 hasConcept C127413603 @default.
- W2000262795 hasConcept C154945302 @default.
- W2000262795 hasConcept C15920480 @default.
- W2000262795 hasConcept C159985019 @default.
- W2000262795 hasConcept C168170006 @default.
- W2000262795 hasConcept C172120300 @default.
- W2000262795 hasConcept C178790620 @default.
- W2000262795 hasConcept C185592680 @default.
- W2000262795 hasConcept C186060115 @default.
- W2000262795 hasConcept C192562407 @default.
- W2000262795 hasConcept C2777566558 @default.
- W2000262795 hasConcept C2778150766 @default.
- W2000262795 hasConcept C2780302967 @default.
- W2000262795 hasConcept C39432304 @default.
- W2000262795 hasConcept C41008148 @default.
- W2000262795 hasConcept C49671963 @default.
- W2000262795 hasConcept C50644808 @default.
- W2000262795 hasConcept C521977710 @default.
- W2000262795 hasConcept C528095902 @default.
- W2000262795 hasConcept C548081761 @default.
- W2000262795 hasConcept C57879066 @default.
- W2000262795 hasConcept C82685317 @default.
- W2000262795 hasConcept C86803240 @default.
- W2000262795 hasConcept C87717796 @default.
- W2000262795 hasConceptScore W2000262795C106131492 @default.
- W2000262795 hasConceptScore W2000262795C119599485 @default.
- W2000262795 hasConceptScore W2000262795C121332964 @default.
- W2000262795 hasConceptScore W2000262795C127413603 @default.
- W2000262795 hasConceptScore W2000262795C154945302 @default.
- W2000262795 hasConceptScore W2000262795C15920480 @default.
- W2000262795 hasConceptScore W2000262795C159985019 @default.
- W2000262795 hasConceptScore W2000262795C168170006 @default.
- W2000262795 hasConceptScore W2000262795C172120300 @default.
- W2000262795 hasConceptScore W2000262795C178790620 @default.
- W2000262795 hasConceptScore W2000262795C185592680 @default.
- W2000262795 hasConceptScore W2000262795C186060115 @default.
- W2000262795 hasConceptScore W2000262795C192562407 @default.
- W2000262795 hasConceptScore W2000262795C2777566558 @default.
- W2000262795 hasConceptScore W2000262795C2778150766 @default.
- W2000262795 hasConceptScore W2000262795C2780302967 @default.