Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000262953> ?p ?o ?g. }
- W2000262953 abstract "Over the last decade, numerous computational methods have been developed in order to infer and model biological networks. Transcriptional networks in particular have attracted significant attention due to their critical role in cell survival. The majority of network inference methods use genome-wide experimental data to search for modules of genes with coherent expression profiles and common regulators, often ignoring the multi-layer structure of transcriptional cascades. Modeling methodologies on the other hand assume a given network structure and vary significantly in their algorithmic approach, ranging from over-simplified representations (e.g., Boolean networks) to detailed -but computationally expensive-network simulations (e.g., with differential equations). In this work we use Artificial Neural Networks (ANNs) to model transcriptional regulatory cascades that emerge during the stress response in Saccharomyces cerevisiae and extend in three layers. We confine the structure of the ANNs to match the structure of the biological networks as determined by gene expression, DNA-protein interaction and experimental evidence provided in publicly available databases. Trained ANNs are able to predict the expression profile of 11 target genes across multiple experimental conditions with a correlation coefficient >0.7. When time-dependent interactions between upstream transcription factors (TFs) and their indirect targets are also included in the ANNs, accurate predictions are achieved for 30/34 target genes. Moreover, heterodimer formation is taken into account. We show that ANNs can be used to (1) accurately predict the expression of downstream genes in a 3-layer transcriptional cascade based on the expression of their indirect regulators and (2) infer the condition- and time-dependent activity of various TFs as well as during heterodimer formation. We show that a three-layer regulatory cascade whose structure is determined by co-expressed gene modules and their regulators can successfully be modeled using ANNs with a similar configuration." @default.
- W2000262953 created "2016-06-24" @default.
- W2000262953 creator A5076745249 @default.
- W2000262953 creator A5088598187 @default.
- W2000262953 date "2013-01-01" @default.
- W2000262953 modified "2023-10-15" @default.
- W2000262953 title "Modeling regulatory cascades using Artificial Neural Networks: the case of transcriptional regulatory networks shaped during the yeast stress response" @default.
- W2000262953 cites W1480911578 @default.
- W2000262953 cites W1503794777 @default.
- W2000262953 cites W1539988911 @default.
- W2000262953 cites W1606232948 @default.
- W2000262953 cites W1644749979 @default.
- W2000262953 cites W1753000577 @default.
- W2000262953 cites W1843542898 @default.
- W2000262953 cites W1921865614 @default.
- W2000262953 cites W1963522244 @default.
- W2000262953 cites W1976544696 @default.
- W2000262953 cites W2000971506 @default.
- W2000262953 cites W2003155571 @default.
- W2000262953 cites W2006367501 @default.
- W2000262953 cites W2009001778 @default.
- W2000262953 cites W2013326913 @default.
- W2000262953 cites W2020617313 @default.
- W2000262953 cites W2030712030 @default.
- W2000262953 cites W2032510252 @default.
- W2000262953 cites W2033300927 @default.
- W2000262953 cites W2035187634 @default.
- W2000262953 cites W2035751541 @default.
- W2000262953 cites W2043977568 @default.
- W2000262953 cites W2045790079 @default.
- W2000262953 cites W2051138775 @default.
- W2000262953 cites W2053126761 @default.
- W2000262953 cites W2067957566 @default.
- W2000262953 cites W2070480084 @default.
- W2000262953 cites W2077816342 @default.
- W2000262953 cites W2080403967 @default.
- W2000262953 cites W2080498142 @default.
- W2000262953 cites W2081313130 @default.
- W2000262953 cites W2082395806 @default.
- W2000262953 cites W2083208786 @default.
- W2000262953 cites W2084382463 @default.
- W2000262953 cites W2087070363 @default.
- W2000262953 cites W2088771474 @default.
- W2000262953 cites W2094238140 @default.
- W2000262953 cites W2097090208 @default.
- W2000262953 cites W2099544459 @default.
- W2000262953 cites W2102033703 @default.
- W2000262953 cites W2104097656 @default.
- W2000262953 cites W2113387206 @default.
- W2000262953 cites W2121995533 @default.
- W2000262953 cites W2123733630 @default.
- W2000262953 cites W2126449841 @default.
- W2000262953 cites W2126602684 @default.
- W2000262953 cites W2127754721 @default.
- W2000262953 cites W2129468806 @default.
- W2000262953 cites W2129737673 @default.
- W2000262953 cites W2136272357 @default.
- W2000262953 cites W2137683543 @default.
- W2000262953 cites W2139334322 @default.
- W2000262953 cites W2140176439 @default.
- W2000262953 cites W2140741853 @default.
- W2000262953 cites W2142400903 @default.
- W2000262953 cites W2142433578 @default.
- W2000262953 cites W2143089069 @default.
- W2000262953 cites W2144824022 @default.
- W2000262953 cites W2145133452 @default.
- W2000262953 cites W2147390656 @default.
- W2000262953 cites W2149841955 @default.
- W2000262953 cites W2150749732 @default.
- W2000262953 cites W2155120241 @default.
- W2000262953 cites W2158241162 @default.
- W2000262953 cites W2160419924 @default.
- W2000262953 cites W2163459094 @default.
- W2000262953 cites W2167190345 @default.
- W2000262953 cites W2170962136 @default.
- W2000262953 cites W2256578114 @default.
- W2000262953 doi "https://doi.org/10.3389/fgene.2013.00110" @default.
- W2000262953 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3687159" @default.
- W2000262953 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23802010" @default.
- W2000262953 hasPublicationYear "2013" @default.
- W2000262953 type Work @default.
- W2000262953 sameAs 2000262953 @default.
- W2000262953 citedByCount "5" @default.
- W2000262953 countsByYear W20002629532013 @default.
- W2000262953 countsByYear W20002629532014 @default.
- W2000262953 countsByYear W20002629532017 @default.
- W2000262953 countsByYear W20002629532021 @default.
- W2000262953 crossrefType "journal-article" @default.
- W2000262953 hasAuthorship W2000262953A5076745249 @default.
- W2000262953 hasAuthorship W2000262953A5088598187 @default.
- W2000262953 hasBestOaLocation W20002629531 @default.
- W2000262953 hasConcept C104317684 @default.
- W2000262953 hasConcept C11413529 @default.
- W2000262953 hasConcept C134444547 @default.
- W2000262953 hasConcept C150194340 @default.
- W2000262953 hasConcept C152662350 @default.
- W2000262953 hasConcept C154945302 @default.
- W2000262953 hasConcept C165864922 @default.
- W2000262953 hasConcept C187455244 @default.
- W2000262953 hasConcept C27153228 @default.