Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000263360> ?p ?o ?g. }
- W2000263360 endingPage "129" @default.
- W2000263360 startingPage "62" @default.
- W2000263360 abstract "We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves an issue raised in [J.J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007) 485–544], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the horizontal p-Laplacean operator, extending some regularity proven in [A. Domokos, J.J. Manfredi, C1,α-regularity for p-harmonic functions in the Heisenberg group for p near 2, in: Contemp. Math., vol. 370, 2005, pp. 17–23]. In turn, using some recent techniques of Caffarelli and Peral [L. Caffarelli, I. Peral, On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998) 1–21], the a priori estimates found are shown to imply the suitable local Calderón–Zygmund theory for the related class of non-homogeneous, possibly degenerate equations involving discontinuous coefficients. These last results extend to the sub-elliptic setting a few classical non-linear Euclidean results [T. Iwaniec, Projections onto gradient fields and Lp-estimates for degenerated elliptic operators, Studia Math. 75 (1983) 293–312; E. DiBenedetto, J.J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115 (1993) 1107–1134], and to the non-linear case estimates of the same nature that were available in the sub-elliptic setting only for solutions to linear equations." @default.
- W2000263360 created "2016-06-24" @default.
- W2000263360 creator A5009768809 @default.
- W2000263360 creator A5055486184 @default.
- W2000263360 creator A5058923206 @default.
- W2000263360 date "2009-09-01" @default.
- W2000263360 modified "2023-09-26" @default.
- W2000263360 title "Gradient regularity for elliptic equations in the Heisenberg group" @default.
- W2000263360 cites W1579581021 @default.
- W2000263360 cites W1592814570 @default.
- W2000263360 cites W1970733363 @default.
- W2000263360 cites W1979090703 @default.
- W2000263360 cites W1994275614 @default.
- W2000263360 cites W2001993056 @default.
- W2000263360 cites W2003501858 @default.
- W2000263360 cites W2010498754 @default.
- W2000263360 cites W2013022438 @default.
- W2000263360 cites W2018076532 @default.
- W2000263360 cites W2021268474 @default.
- W2000263360 cites W2022757729 @default.
- W2000263360 cites W2024626650 @default.
- W2000263360 cites W2026191437 @default.
- W2000263360 cites W2029225538 @default.
- W2000263360 cites W2030250508 @default.
- W2000263360 cites W2043515542 @default.
- W2000263360 cites W2044785968 @default.
- W2000263360 cites W2049579190 @default.
- W2000263360 cites W2050726222 @default.
- W2000263360 cites W2057335654 @default.
- W2000263360 cites W2058357345 @default.
- W2000263360 cites W2069330133 @default.
- W2000263360 cites W2075128283 @default.
- W2000263360 cites W2088076367 @default.
- W2000263360 cites W2094067002 @default.
- W2000263360 cites W2095188979 @default.
- W2000263360 cites W2139039659 @default.
- W2000263360 cites W2147297571 @default.
- W2000263360 cites W2162034979 @default.
- W2000263360 cites W2171736073 @default.
- W2000263360 cites W855799140 @default.
- W2000263360 doi "https://doi.org/10.1016/j.aim.2009.03.016" @default.
- W2000263360 hasPublicationYear "2009" @default.
- W2000263360 type Work @default.
- W2000263360 sameAs 2000263360 @default.
- W2000263360 citedByCount "71" @default.
- W2000263360 countsByYear W20002633602012 @default.
- W2000263360 countsByYear W20002633602013 @default.
- W2000263360 countsByYear W20002633602014 @default.
- W2000263360 countsByYear W20002633602015 @default.
- W2000263360 countsByYear W20002633602016 @default.
- W2000263360 countsByYear W20002633602017 @default.
- W2000263360 countsByYear W20002633602018 @default.
- W2000263360 countsByYear W20002633602019 @default.
- W2000263360 countsByYear W20002633602020 @default.
- W2000263360 countsByYear W20002633602021 @default.
- W2000263360 countsByYear W20002633602022 @default.
- W2000263360 countsByYear W20002633602023 @default.
- W2000263360 crossrefType "journal-article" @default.
- W2000263360 hasAuthorship W2000263360A5009768809 @default.
- W2000263360 hasAuthorship W2000263360A5055486184 @default.
- W2000263360 hasAuthorship W2000263360A5058923206 @default.
- W2000263360 hasBestOaLocation W20002633601 @default.
- W2000263360 hasConcept C104317684 @default.
- W2000263360 hasConcept C121332964 @default.
- W2000263360 hasConcept C127413603 @default.
- W2000263360 hasConcept C127519595 @default.
- W2000263360 hasConcept C134306372 @default.
- W2000263360 hasConcept C138885662 @default.
- W2000263360 hasConcept C158448853 @default.
- W2000263360 hasConcept C17020691 @default.
- W2000263360 hasConcept C178790620 @default.
- W2000263360 hasConcept C179603306 @default.
- W2000263360 hasConcept C185592680 @default.
- W2000263360 hasConcept C202444582 @default.
- W2000263360 hasConcept C207390915 @default.
- W2000263360 hasConcept C2780388253 @default.
- W2000263360 hasConcept C2780428219 @default.
- W2000263360 hasConcept C2781311116 @default.
- W2000263360 hasConcept C33676613 @default.
- W2000263360 hasConcept C33923547 @default.
- W2000263360 hasConcept C41895202 @default.
- W2000263360 hasConcept C55493867 @default.
- W2000263360 hasConcept C62520636 @default.
- W2000263360 hasConcept C70610323 @default.
- W2000263360 hasConcept C72319582 @default.
- W2000263360 hasConcept C78519656 @default.
- W2000263360 hasConcept C86339819 @default.
- W2000263360 hasConceptScore W2000263360C104317684 @default.
- W2000263360 hasConceptScore W2000263360C121332964 @default.
- W2000263360 hasConceptScore W2000263360C127413603 @default.
- W2000263360 hasConceptScore W2000263360C127519595 @default.
- W2000263360 hasConceptScore W2000263360C134306372 @default.
- W2000263360 hasConceptScore W2000263360C138885662 @default.
- W2000263360 hasConceptScore W2000263360C158448853 @default.
- W2000263360 hasConceptScore W2000263360C17020691 @default.
- W2000263360 hasConceptScore W2000263360C178790620 @default.
- W2000263360 hasConceptScore W2000263360C179603306 @default.
- W2000263360 hasConceptScore W2000263360C185592680 @default.