Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000266578> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2000266578 abstract "The genomic revolution has led to rapid growth in sequencing of genes and proteins, and attention is now turning to the function of the encoded proteins. In this respect, microscope imaging of a protein's sub-cellular localisation is proving invaluable, and recent advances in automated fluorescent microscopy allow protein localisations to be imaged in high throughput. Hence there is a need for large scale automated computational techniques to efficiently quantify, distinguish and classify sub-cellular images. While image statistics have proved highly successful in distinguishing localisation, commonly used measures suffer from being relatively slow to compute, and often require cells to be individually selected from experimental images, thus limiting both throughput and the range of potential applications. Here we introduce threshold adjacency statistics, the essence which is to threshold the image and to count the number of above threshold pixels with a given number of above threshold pixels adjacent. These novel measures are shown to distinguish and classify images of distinct sub-cellular localization with high speed and accuracy without image cropping.Threshold adjacency statistics are applied to classification of protein sub-cellular localization images. They are tested on two image sets (available for download), one for which fluorescently tagged proteins are endogenously expressed in 10 sub-cellular locations, and another for which proteins are transfected into 11 locations. For each image set, a support vector machine was trained and tested. Classification accuracies of 94.4% and 86.6% are obtained on the endogenous and transfected sets, respectively. Threshold adjacency statistics are found to provide comparable or higher accuracy than other commonly used statistics while being an order of magnitude faster to calculate. Further, threshold adjacency statistics in combination with Haralick measures give accuracies of 98.2% and 93.2% on the endogenous and transfected sets, respectively.Threshold adjacency statistics have the potential to greatly extend the scale and range of applications of image statistics in computational image analysis. They remove the need for cropping of individual cells from images, and are an order of magnitude faster to calculate than other commonly used statistics while providing comparable or better classification accuracy, both essential requirements for application to large-scale approaches." @default.
- W2000266578 created "2016-06-24" @default.
- W2000266578 creator A5045250017 @default.
- W2000266578 creator A5056823136 @default.
- W2000266578 creator A5072586243 @default.
- W2000266578 creator A5085188588 @default.
- W2000266578 date "2007-03-30" @default.
- W2000266578 modified "2023-10-18" @default.
- W2000266578 title "Fast automated cell phenotype image classification" @default.
- W2000266578 cites W1510773016 @default.
- W2000266578 cites W1579543411 @default.
- W2000266578 cites W1985317603 @default.
- W2000266578 cites W1993846072 @default.
- W2000266578 cites W2047834789 @default.
- W2000266578 cites W2058368262 @default.
- W2000266578 cites W2059432853 @default.
- W2000266578 cites W2111202632 @default.
- W2000266578 cites W2113769434 @default.
- W2000266578 cites W2113846729 @default.
- W2000266578 cites W2118376687 @default.
- W2000266578 cites W2121780841 @default.
- W2000266578 cites W2139042094 @default.
- W2000266578 cites W2141007997 @default.
- W2000266578 cites W2147809341 @default.
- W2000266578 cites W2169805130 @default.
- W2000266578 cites W2060810969 @default.
- W2000266578 doi "https://doi.org/10.1186/1471-2105-8-110" @default.
- W2000266578 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1847687" @default.
- W2000266578 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17394669" @default.
- W2000266578 hasPublicationYear "2007" @default.
- W2000266578 type Work @default.
- W2000266578 sameAs 2000266578 @default.
- W2000266578 citedByCount "145" @default.
- W2000266578 countsByYear W20002665782012 @default.
- W2000266578 countsByYear W20002665782013 @default.
- W2000266578 countsByYear W20002665782014 @default.
- W2000266578 countsByYear W20002665782015 @default.
- W2000266578 countsByYear W20002665782016 @default.
- W2000266578 countsByYear W20002665782017 @default.
- W2000266578 countsByYear W20002665782018 @default.
- W2000266578 countsByYear W20002665782019 @default.
- W2000266578 countsByYear W20002665782020 @default.
- W2000266578 countsByYear W20002665782021 @default.
- W2000266578 countsByYear W20002665782022 @default.
- W2000266578 countsByYear W20002665782023 @default.
- W2000266578 crossrefType "journal-article" @default.
- W2000266578 hasAuthorship W2000266578A5045250017 @default.
- W2000266578 hasAuthorship W2000266578A5056823136 @default.
- W2000266578 hasAuthorship W2000266578A5072586243 @default.
- W2000266578 hasAuthorship W2000266578A5085188588 @default.
- W2000266578 hasBestOaLocation W20002665781 @default.
- W2000266578 hasConcept C110484373 @default.
- W2000266578 hasConcept C11413529 @default.
- W2000266578 hasConcept C115961682 @default.
- W2000266578 hasConcept C153180895 @default.
- W2000266578 hasConcept C154945302 @default.
- W2000266578 hasConcept C160633673 @default.
- W2000266578 hasConcept C41008148 @default.
- W2000266578 hasConcept C70721500 @default.
- W2000266578 hasConcept C86803240 @default.
- W2000266578 hasConcept C9417928 @default.
- W2000266578 hasConceptScore W2000266578C110484373 @default.
- W2000266578 hasConceptScore W2000266578C11413529 @default.
- W2000266578 hasConceptScore W2000266578C115961682 @default.
- W2000266578 hasConceptScore W2000266578C153180895 @default.
- W2000266578 hasConceptScore W2000266578C154945302 @default.
- W2000266578 hasConceptScore W2000266578C160633673 @default.
- W2000266578 hasConceptScore W2000266578C41008148 @default.
- W2000266578 hasConceptScore W2000266578C70721500 @default.
- W2000266578 hasConceptScore W2000266578C86803240 @default.
- W2000266578 hasConceptScore W2000266578C9417928 @default.
- W2000266578 hasIssue "1" @default.
- W2000266578 hasLocation W20002665781 @default.
- W2000266578 hasLocation W20002665782 @default.
- W2000266578 hasLocation W20002665783 @default.
- W2000266578 hasLocation W20002665784 @default.
- W2000266578 hasLocation W20002665785 @default.
- W2000266578 hasOpenAccess W2000266578 @default.
- W2000266578 hasPrimaryLocation W20002665781 @default.
- W2000266578 hasRelatedWork W1965781815 @default.
- W2000266578 hasRelatedWork W2136485282 @default.
- W2000266578 hasRelatedWork W2149249189 @default.
- W2000266578 hasRelatedWork W2155555592 @default.
- W2000266578 hasRelatedWork W2269705005 @default.
- W2000266578 hasRelatedWork W2542880803 @default.
- W2000266578 hasRelatedWork W2546871836 @default.
- W2000266578 hasRelatedWork W2547748020 @default.
- W2000266578 hasRelatedWork W3043252291 @default.
- W2000266578 hasRelatedWork W3160284275 @default.
- W2000266578 hasVolume "8" @default.
- W2000266578 isParatext "false" @default.
- W2000266578 isRetracted "false" @default.
- W2000266578 magId "2000266578" @default.
- W2000266578 workType "article" @default.