Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000269533> ?p ?o ?g. }
- W2000269533 endingPage "29" @default.
- W2000269533 startingPage "1" @default.
- W2000269533 abstract "Sri Lanka, the ‘pendant’ of Gondwana, is a collage of distinct crustal blocks that preserve important records of major Neoproterozoic tectonothermal events. Here, we present the petrology, geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes on a suite of meta-igneous rocks including granodiorite, diorite and garnet amphibolite from the Kadugannawa Complex (KC), granodiorite from the Wanni Complex (WC) and mafic granulites, gabbros and garnet-bearing charnockite from the Highland Complex (HC) along a NW–SE transect. The regional metamorphic peak P–T conditions were estimated from garnet-clinopyroxene-plagioclase-quartz assemblage in the metagabbro as 830–860 °C and 9.4–9.8 kbar. Slightly lower temperature ranges of 700–780 °C were obtained from garnet amphibolite, metagranodiorite and metadiorite, corresponding retrograde conditions. Trace element and rare earth element patterns as well as Rb-Y-Nb and Rb-Yb-Ta discrimination plots show volcanic arc affinity for the granodiorite, diorite and garnet charnockite suggesting that the protoliths of the rocks were formed from felsic to intermediate arc magmas. The mafic granulites and magnesian metagabbro also suggest volcanic arc affinity and indicate subduction-related mafic magmatism and magma underplating. The garnet-bearing metagabbro shows N-MORB signature, whereas the garnet amphibolite displays oceanic island alkali basalt affinity. These rocks therefore represent accretion of the remnants of oceanic lithosphere during the subduction-collisional event. Zircons in a metadiorite and the surrounding metagranodiorite from the KC yield ages of 980 ± 16 Ma to 916 ± 57 Ma marking early Neoproterozoic magmatism followed by metamorphism at 532 ± 18 Ma. Zircons in the garnet amphibolite from this complex show extensive metamorphic recrystallization yielding a weighted mean 206Pb/238U age of 520.7 ± 6.6 Ma. From the WC, zircons in a metagranodiorite define three groups of weighted mean 206Pb/238U ages at 805 ± 12 Ma (emplacement of the magmatic protolith), 734.0 ± 4.6 Ma (Cryogenian thermal event) and 546.0 ± 5.7 Ma (latest Neoproterozoic-Cambrian metamorphism). Zircons from the HC record multiple late Neoproterozoic-Cambrian thermal events with weighted mean 206Pb/238U ages of 576.8 ± 9.3 Ma and 523.0 ± 7.1 Ma (metagabbro) and 579 ± 10 Ma, 540.4 ± 6.0 Ma and 511.1 ± 5.9 Ma (garnet charnockite), 553.0 ± 3.2 Ma (mafic granulite), and 539.1 ± 4.4 Ma (mafic granulite sill). Lu–Hf data reveal dominantly positive ɛHf(t) values for zircons in the metadiorite and metagranodiorite from the KC (−1.1 to 7.2) and Hf crustal model ages (TDMC) in the range of 1206–1733 Ma suggesting a mixed source from both juvenile and Paleo-Mesoproterozoic components. However, zircons in the garnet amphibolite from this complex show dominantly negative ɛHf(t) values (mean −16.5) with TDMC in the range of 2356–2828 Ma suggesting reworked Neoarchean-Paleoproterozoic crustal source. Zircons in metagranodiorite of the WC also possess negative ɛHf(t) values (mean −6.2) with TDMC in the range of 1799–2498 Ma suggesting reworked Paleoproterozoic crust as the magma source. The HC rocks also preserve distinct imprints of reworking of older crust. The zircon ɛHf(t) values in mafic granulite show a tight cluster from −2.2 to 0.1 with TDMC in the range of 1501–1651 Ma suggesting a mixed source from both juvenile Neoproterozoic and reworked Mesoproterozoic components. Zircons in the metagabbro from this complex show negative ɛHf(t) values (mean −6.3) and TDMC of 1847–1978 Ma. Zircons in the garnet charnockite also display highly negative ɛHf(t) values (mean −17.7) and older TDMC) (mean 2614 Ma) suggesting reworked Paleoproterozoic crust. Zircons in the mafic granulite sample show negative ɛHf(t) values (mean −14.1) and TDMC between 2263 and 2790 Ma indicating that the source material for the magma evolved from the Neoarchean-Paleoproterozoic crust. In summary, the 916–980 Ma ages from the KC represent arc magmatism during early Neoproterozoic, followed by the 805 Ma granodioritic magma emplacement in the WC. Repeated thermal events during mid and late Neoproterozoic are also recorded from the Wanni and Highland Complexes, culminating in Cambrian high-grade metamorphism that reached ultrahigh-temperature conditions. We propose a model of double-sided subduction during the Neoproterozoic, where the Wanni Complex to the west and the Vijayan Complex to the east represent continental arcs, culminating in collision along the HC during late Neoproterozoic-Cambrian." @default.
- W2000269533 created "2016-06-24" @default.
- W2000269533 creator A5016562202 @default.
- W2000269533 creator A5020035674 @default.
- W2000269533 creator A5051221169 @default.
- W2000269533 creator A5058926978 @default.
- W2000269533 creator A5060053337 @default.
- W2000269533 creator A5067142616 @default.
- W2000269533 creator A5069350652 @default.
- W2000269533 date "2014-12-01" @default.
- W2000269533 modified "2023-10-16" @default.
- W2000269533 title "Neoproterozoic crustal evolution in Sri Lanka: Insights from petrologic, geochemical and zircon U–Pb and Lu–Hf isotopic data and implications for Gondwana assembly" @default.
- W2000269533 cites W1558493973 @default.
- W2000269533 cites W1966081220 @default.
- W2000269533 cites W1968621724 @default.
- W2000269533 cites W1969859799 @default.
- W2000269533 cites W1971194228 @default.
- W2000269533 cites W1972957385 @default.
- W2000269533 cites W1977263417 @default.
- W2000269533 cites W1977768803 @default.
- W2000269533 cites W1986586791 @default.
- W2000269533 cites W1987954487 @default.
- W2000269533 cites W1995543459 @default.
- W2000269533 cites W1996573602 @default.
- W2000269533 cites W1998573648 @default.
- W2000269533 cites W2000038761 @default.
- W2000269533 cites W2001167641 @default.
- W2000269533 cites W2002451749 @default.
- W2000269533 cites W2003641336 @default.
- W2000269533 cites W2004934899 @default.
- W2000269533 cites W2005215065 @default.
- W2000269533 cites W2006644083 @default.
- W2000269533 cites W2008085162 @default.
- W2000269533 cites W2008691821 @default.
- W2000269533 cites W2009251618 @default.
- W2000269533 cites W2011332054 @default.
- W2000269533 cites W2015773684 @default.
- W2000269533 cites W2016836274 @default.
- W2000269533 cites W2017788609 @default.
- W2000269533 cites W2021788085 @default.
- W2000269533 cites W2024664596 @default.
- W2000269533 cites W2027681330 @default.
- W2000269533 cites W2030418749 @default.
- W2000269533 cites W2036208401 @default.
- W2000269533 cites W2038670981 @default.
- W2000269533 cites W2039586278 @default.
- W2000269533 cites W2039872199 @default.
- W2000269533 cites W2040549377 @default.
- W2000269533 cites W2041400659 @default.
- W2000269533 cites W2042173097 @default.
- W2000269533 cites W2043063526 @default.
- W2000269533 cites W2044181216 @default.
- W2000269533 cites W2046239832 @default.
- W2000269533 cites W2046633347 @default.
- W2000269533 cites W2048240400 @default.
- W2000269533 cites W2052363903 @default.
- W2000269533 cites W2059013108 @default.
- W2000269533 cites W2059106537 @default.
- W2000269533 cites W2062349889 @default.
- W2000269533 cites W2067090471 @default.
- W2000269533 cites W2068403951 @default.
- W2000269533 cites W2070518157 @default.
- W2000269533 cites W2074260456 @default.
- W2000269533 cites W2075618823 @default.
- W2000269533 cites W2075843864 @default.
- W2000269533 cites W2077048854 @default.
- W2000269533 cites W2078177242 @default.
- W2000269533 cites W2078490456 @default.
- W2000269533 cites W2079095743 @default.
- W2000269533 cites W2080356008 @default.
- W2000269533 cites W2084813609 @default.
- W2000269533 cites W2088337974 @default.
- W2000269533 cites W2089522169 @default.
- W2000269533 cites W2090206242 @default.
- W2000269533 cites W2091097158 @default.
- W2000269533 cites W2095084937 @default.
- W2000269533 cites W2100318303 @default.
- W2000269533 cites W2106146079 @default.
- W2000269533 cites W2108971421 @default.
- W2000269533 cites W2109692694 @default.
- W2000269533 cites W2114201847 @default.
- W2000269533 cites W2114826806 @default.
- W2000269533 cites W2125524794 @default.
- W2000269533 cites W2133042542 @default.
- W2000269533 cites W2140093647 @default.
- W2000269533 cites W2142731893 @default.
- W2000269533 cites W2149678487 @default.
- W2000269533 cites W2152616884 @default.
- W2000269533 cites W2164004879 @default.
- W2000269533 cites W2171662275 @default.
- W2000269533 cites W2512599475 @default.
- W2000269533 cites W2746226883 @default.
- W2000269533 doi "https://doi.org/10.1016/j.precamres.2014.09.017" @default.
- W2000269533 hasPublicationYear "2014" @default.
- W2000269533 type Work @default.
- W2000269533 sameAs 2000269533 @default.
- W2000269533 citedByCount "71" @default.
- W2000269533 countsByYear W20002695332015 @default.