Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000285093> ?p ?o ?g. }
- W2000285093 endingPage "120" @default.
- W2000285093 startingPage "115" @default.
- W2000285093 abstract "This paper describes the application of two different neural network models, the standard-back propagation (SBP) model and the radial basis neural network (RBNN) model, to predict monthly sediment yield as a function of monthly rainfall and runoff during the rainy season for a watershed area in India. Four scenarios were considered to determine the type and number of inputs for the artificial neural network (ANN) model. It was observed that in the small and forested watershed of Nagwa, the inclusion of monthly precipitation and average discharge values improved the performance of the ANN model in the estimation of monthly sediment yield. The momentum rate, number of nodes at the hidden layer, number of nodes at the prototype layer, linear coefficient, learning rule, and transfer functions were optimized based on lowest root-mean-square error and highest correlation coefficient values. The optimized parameters were used for the SBP and RBNN models. During validation periods, the RBNN model was closer to the observed values than SBP. The mean annual observed sediment yield was 3.7 t/ha. The mean annual simulated sediment yields were found to be 3.1 and 3.5 t/ha in SBP during training and validation periods. RBNN simulated mean annual sediment yields of 3.6 and 3.5 t/ha during training and validation periods. The results are indicative that the RBNN model is more appropriate for forecasting/simulating the sediment yield at a single point of interest in agricultural watersheds." @default.
- W2000285093 created "2016-06-24" @default.
- W2000285093 creator A5016717376 @default.
- W2000285093 creator A5043476844 @default.
- W2000285093 creator A5059594017 @default.
- W2000285093 creator A5091799634 @default.
- W2000285093 date "2013-01-01" @default.
- W2000285093 modified "2023-10-14" @default.
- W2000285093 title "Comparison of Artificial Neural Network Models for Sediment Yield Prediction at Single Gauging Station of Watershed in Eastern India" @default.
- W2000285093 cites W1998442441 @default.
- W2000285093 cites W2001220510 @default.
- W2000285093 cites W2011412119 @default.
- W2000285093 cites W2031292142 @default.
- W2000285093 cites W2032691163 @default.
- W2000285093 cites W2033904036 @default.
- W2000285093 cites W2034908427 @default.
- W2000285093 cites W2052947666 @default.
- W2000285093 cites W2055265978 @default.
- W2000285093 cites W2063263322 @default.
- W2000285093 cites W2063756720 @default.
- W2000285093 cites W2065560988 @default.
- W2000285093 cites W2074770406 @default.
- W2000285093 cites W2077894979 @default.
- W2000285093 cites W2109247873 @default.
- W2000285093 cites W2114824684 @default.
- W2000285093 cites W2144729270 @default.
- W2000285093 cites W3017323153 @default.
- W2000285093 cites W3018770027 @default.
- W2000285093 doi "https://doi.org/10.1061/(asce)he.1943-5584.0000601" @default.
- W2000285093 hasPublicationYear "2013" @default.
- W2000285093 type Work @default.
- W2000285093 sameAs 2000285093 @default.
- W2000285093 citedByCount "24" @default.
- W2000285093 countsByYear W20002850932013 @default.
- W2000285093 countsByYear W20002850932014 @default.
- W2000285093 countsByYear W20002850932015 @default.
- W2000285093 countsByYear W20002850932016 @default.
- W2000285093 countsByYear W20002850932017 @default.
- W2000285093 countsByYear W20002850932019 @default.
- W2000285093 countsByYear W20002850932020 @default.
- W2000285093 countsByYear W20002850932021 @default.
- W2000285093 countsByYear W20002850932022 @default.
- W2000285093 countsByYear W20002850932023 @default.
- W2000285093 crossrefType "journal-article" @default.
- W2000285093 hasAuthorship W2000285093A5016717376 @default.
- W2000285093 hasAuthorship W2000285093A5043476844 @default.
- W2000285093 hasAuthorship W2000285093A5059594017 @default.
- W2000285093 hasAuthorship W2000285093A5091799634 @default.
- W2000285093 hasConcept C105795698 @default.
- W2000285093 hasConcept C107054158 @default.
- W2000285093 hasConcept C119857082 @default.
- W2000285093 hasConcept C127313418 @default.
- W2000285093 hasConcept C139945424 @default.
- W2000285093 hasConcept C150547873 @default.
- W2000285093 hasConcept C151730666 @default.
- W2000285093 hasConcept C153294291 @default.
- W2000285093 hasConcept C159390177 @default.
- W2000285093 hasConcept C187320778 @default.
- W2000285093 hasConcept C18903297 @default.
- W2000285093 hasConcept C205649164 @default.
- W2000285093 hasConcept C2780092901 @default.
- W2000285093 hasConcept C2816523 @default.
- W2000285093 hasConcept C33923547 @default.
- W2000285093 hasConcept C39432304 @default.
- W2000285093 hasConcept C41008148 @default.
- W2000285093 hasConcept C48921125 @default.
- W2000285093 hasConcept C50477045 @default.
- W2000285093 hasConcept C50644808 @default.
- W2000285093 hasConcept C76886044 @default.
- W2000285093 hasConcept C86803240 @default.
- W2000285093 hasConceptScore W2000285093C105795698 @default.
- W2000285093 hasConceptScore W2000285093C107054158 @default.
- W2000285093 hasConceptScore W2000285093C119857082 @default.
- W2000285093 hasConceptScore W2000285093C127313418 @default.
- W2000285093 hasConceptScore W2000285093C139945424 @default.
- W2000285093 hasConceptScore W2000285093C150547873 @default.
- W2000285093 hasConceptScore W2000285093C151730666 @default.
- W2000285093 hasConceptScore W2000285093C153294291 @default.
- W2000285093 hasConceptScore W2000285093C159390177 @default.
- W2000285093 hasConceptScore W2000285093C187320778 @default.
- W2000285093 hasConceptScore W2000285093C18903297 @default.
- W2000285093 hasConceptScore W2000285093C205649164 @default.
- W2000285093 hasConceptScore W2000285093C2780092901 @default.
- W2000285093 hasConceptScore W2000285093C2816523 @default.
- W2000285093 hasConceptScore W2000285093C33923547 @default.
- W2000285093 hasConceptScore W2000285093C39432304 @default.
- W2000285093 hasConceptScore W2000285093C41008148 @default.
- W2000285093 hasConceptScore W2000285093C48921125 @default.
- W2000285093 hasConceptScore W2000285093C50477045 @default.
- W2000285093 hasConceptScore W2000285093C50644808 @default.
- W2000285093 hasConceptScore W2000285093C76886044 @default.
- W2000285093 hasConceptScore W2000285093C86803240 @default.
- W2000285093 hasIssue "1" @default.
- W2000285093 hasLocation W20002850931 @default.
- W2000285093 hasOpenAccess W2000285093 @default.
- W2000285093 hasPrimaryLocation W20002850931 @default.
- W2000285093 hasRelatedWork W135588877 @default.
- W2000285093 hasRelatedWork W1973830956 @default.