Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000292092> ?p ?o ?g. }
- W2000292092 endingPage "907" @default.
- W2000292092 startingPage "895" @default.
- W2000292092 abstract "Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely multi-modal multi-task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of 'AD', 'MCI' or 'HC'), from the baseline MRI, FDG-PET, and CSF data. In the second set of experiments, we predict the 2-year changes of MMSE and ADAS-Cog scores and also the conversion of MCI to AD from the baseline MRI, FDG-PET, and CSF data. The results on both sets of experiments demonstrate that our proposed M3T learning scheme can achieve better performance on both regression and classification tasks than the conventional learning methods." @default.
- W2000292092 created "2016-06-24" @default.
- W2000292092 creator A5000937401 @default.
- W2000292092 creator A5018821033 @default.
- W2000292092 date "2012-01-01" @default.
- W2000292092 modified "2023-10-16" @default.
- W2000292092 title "Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease" @default.
- W2000292092 cites W1847168837 @default.
- W2000292092 cites W1953027527 @default.
- W2000292092 cites W1969787718 @default.
- W2000292092 cites W1973110960 @default.
- W2000292092 cites W1981190087 @default.
- W2000292092 cites W1986014162 @default.
- W2000292092 cites W1997228011 @default.
- W2000292092 cites W1998710995 @default.
- W2000292092 cites W2008301592 @default.
- W2000292092 cites W2009354197 @default.
- W2000292092 cites W2011824425 @default.
- W2000292092 cites W2013676175 @default.
- W2000292092 cites W2026553142 @default.
- W2000292092 cites W2043322114 @default.
- W2000292092 cites W2045867209 @default.
- W2000292092 cites W2061699647 @default.
- W2000292092 cites W2065180801 @default.
- W2000292092 cites W2071881327 @default.
- W2000292092 cites W2076680453 @default.
- W2000292092 cites W2078563723 @default.
- W2000292092 cites W2081481111 @default.
- W2000292092 cites W2084358449 @default.
- W2000292092 cites W2086978209 @default.
- W2000292092 cites W2102508963 @default.
- W2000292092 cites W2109845730 @default.
- W2000292092 cites W2113127248 @default.
- W2000292092 cites W2118832993 @default.
- W2000292092 cites W2122320288 @default.
- W2000292092 cites W2126927216 @default.
- W2000292092 cites W2128251808 @default.
- W2000292092 cites W2136573752 @default.
- W2000292092 cites W2143426320 @default.
- W2000292092 cites W2146089088 @default.
- W2000292092 cites W2146788881 @default.
- W2000292092 cites W2148046162 @default.
- W2000292092 cites W2149614271 @default.
- W2000292092 cites W2151050383 @default.
- W2000292092 cites W2155164847 @default.
- W2000292092 cites W2155298532 @default.
- W2000292092 cites W2157412686 @default.
- W2000292092 cites W2157848968 @default.
- W2000292092 cites W2157994299 @default.
- W2000292092 cites W2164417323 @default.
- W2000292092 cites W2889574304 @default.
- W2000292092 doi "https://doi.org/10.1016/j.neuroimage.2011.09.069" @default.
- W2000292092 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3230721" @default.
- W2000292092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21992749" @default.
- W2000292092 hasPublicationYear "2012" @default.
- W2000292092 type Work @default.
- W2000292092 sameAs 2000292092 @default.
- W2000292092 citedByCount "536" @default.
- W2000292092 countsByYear W20002920922012 @default.
- W2000292092 countsByYear W20002920922013 @default.
- W2000292092 countsByYear W20002920922014 @default.
- W2000292092 countsByYear W20002920922015 @default.
- W2000292092 countsByYear W20002920922016 @default.
- W2000292092 countsByYear W20002920922017 @default.
- W2000292092 countsByYear W20002920922018 @default.
- W2000292092 countsByYear W20002920922019 @default.
- W2000292092 countsByYear W20002920922020 @default.
- W2000292092 countsByYear W20002920922021 @default.
- W2000292092 countsByYear W20002920922022 @default.
- W2000292092 countsByYear W20002920922023 @default.
- W2000292092 crossrefType "journal-article" @default.
- W2000292092 hasAuthorship W2000292092A5000937401 @default.
- W2000292092 hasAuthorship W2000292092A5018821033 @default.
- W2000292092 hasBestOaLocation W20002920922 @default.
- W2000292092 hasConcept C105795698 @default.
- W2000292092 hasConcept C119857082 @default.
- W2000292092 hasConcept C12267149 @default.
- W2000292092 hasConcept C148483581 @default.
- W2000292092 hasConcept C152877465 @default.
- W2000292092 hasConcept C153180895 @default.
- W2000292092 hasConcept C154945302 @default.
- W2000292092 hasConcept C2780226545 @default.
- W2000292092 hasConcept C33923547 @default.
- W2000292092 hasConcept C41008148 @default.
- W2000292092 hasConcept C5274069 @default.
- W2000292092 hasConcept C83546350 @default.
- W2000292092 hasConceptScore W2000292092C105795698 @default.
- W2000292092 hasConceptScore W2000292092C119857082 @default.
- W2000292092 hasConceptScore W2000292092C12267149 @default.
- W2000292092 hasConceptScore W2000292092C148483581 @default.
- W2000292092 hasConceptScore W2000292092C152877465 @default.
- W2000292092 hasConceptScore W2000292092C153180895 @default.
- W2000292092 hasConceptScore W2000292092C154945302 @default.
- W2000292092 hasConceptScore W2000292092C2780226545 @default.
- W2000292092 hasConceptScore W2000292092C33923547 @default.
- W2000292092 hasConceptScore W2000292092C41008148 @default.
- W2000292092 hasConceptScore W2000292092C5274069 @default.
- W2000292092 hasConceptScore W2000292092C83546350 @default.