Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000296220> ?p ?o ?g. }
- W2000296220 endingPage "114" @default.
- W2000296220 startingPage "101" @default.
- W2000296220 abstract "The modern implementation of the boundary element method [23] has ushered unprecedented accuracy and precision for the solution of the Stokes equations of hydrodynamics with stick boundary conditions. This article begins by reviewing computations with the program BEST of smooth surface objects such as ellipsoids, the dumbbell, and cylinders that demonstrate that the numerical solution of the integral equation formulation of hydrodynamics yields very high precision and accuracy. When BEST is used for macromolecular computations, the limiting factor becomes the definition of the molecular hydrodynamic surface and the implied effective solvation of the molecular surface. Studies on 49 different proteins, ranging in molecular weight from 9 to over 400kDa, have shown that a model using a 1.1Å thick hydration layer describes all protein transport properties very well for the overwhelming majority of them. In addition, this data implies that the crystal structure is an excellent representation of the average solution structure for most of them. In order to investigate the origin of a handful of significant discrepancies in some multimeric proteins (about -20% observed in the intrinsic viscosity), the technique of Molecular Dynamics simulation (MD) has been incorporated into the research program. A preliminary study of dimeric α-chymotrypsin using approximate implicit water MD is presented. In addition I describe the successful validation of modern protein force fields, ff03 and ff99SB, for the accurate computation of solution structure in explicit water simulation by comparison of trajectory ensemble average computed transport properties with experimental measurements. This work includes small proteins such as lysozyme, ribonuclease and ubiquitin using trajectories around 10ns duration. We have also studied a 150kDa flexible monoclonal IgG antibody, Trastuzumab, with multiple independent trajectories encompassing over 320ns of simulation. The close agreement within experimental error of the computed and measured properties allows us to conclude that MD does produce structures typical of those in solution, and that flexible molecules can be properly described using the method of ensemble averaging over a trajectory. We review similar work on the study of a transfer RNA molecule and DNA oligomers that demonstrate that within 3% a simple uniform hydration model 1.1Å thick provides agreement with experiment for these nucleic acids. In the case of linear oligomers, the precision can be improved close to 1% by a non-uniform hydration model that hydrates mainly in the DNA grooves, in agreement with high resolution X-ray diffraction. We conclude with a vista on planned improvements for the BEST program to decrease its memory requirements and increase its speed without sacrificing accuracy." @default.
- W2000296220 created "2016-06-24" @default.
- W2000296220 creator A5000149163 @default.
- W2000296220 date "2011-05-01" @default.
- W2000296220 modified "2023-10-18" @default.
- W2000296220 title "Recent advances in macromolecular hydrodynamic modeling" @default.
- W2000296220 cites W1517875912 @default.
- W2000296220 cites W1518002808 @default.
- W2000296220 cites W1585995543 @default.
- W2000296220 cites W1602790144 @default.
- W2000296220 cites W1964895229 @default.
- W2000296220 cites W1965985935 @default.
- W2000296220 cites W1971317954 @default.
- W2000296220 cites W1972353715 @default.
- W2000296220 cites W1975317507 @default.
- W2000296220 cites W1975771552 @default.
- W2000296220 cites W1977925707 @default.
- W2000296220 cites W1983279743 @default.
- W2000296220 cites W1985486427 @default.
- W2000296220 cites W1987368223 @default.
- W2000296220 cites W1988522626 @default.
- W2000296220 cites W1988585128 @default.
- W2000296220 cites W1989649823 @default.
- W2000296220 cites W1990937324 @default.
- W2000296220 cites W1992836798 @default.
- W2000296220 cites W1996982670 @default.
- W2000296220 cites W2005163807 @default.
- W2000296220 cites W2013896943 @default.
- W2000296220 cites W2013931680 @default.
- W2000296220 cites W2014954784 @default.
- W2000296220 cites W2016226468 @default.
- W2000296220 cites W2023269994 @default.
- W2000296220 cites W2025694445 @default.
- W2000296220 cites W2028108179 @default.
- W2000296220 cites W2031871292 @default.
- W2000296220 cites W2032945955 @default.
- W2000296220 cites W2037363639 @default.
- W2000296220 cites W2040506774 @default.
- W2000296220 cites W2046058559 @default.
- W2000296220 cites W2046231291 @default.
- W2000296220 cites W2049717078 @default.
- W2000296220 cites W2052120027 @default.
- W2000296220 cites W2056180063 @default.
- W2000296220 cites W2060079863 @default.
- W2000296220 cites W2060279928 @default.
- W2000296220 cites W2060738102 @default.
- W2000296220 cites W2063831812 @default.
- W2000296220 cites W2067375798 @default.
- W2000296220 cites W2067608620 @default.
- W2000296220 cites W2083047919 @default.
- W2000296220 cites W2083356447 @default.
- W2000296220 cites W2093381148 @default.
- W2000296220 cites W2103940991 @default.
- W2000296220 cites W2143444693 @default.
- W2000296220 cites W2144288821 @default.
- W2000296220 cites W2158098325 @default.
- W2000296220 cites W2166478478 @default.
- W2000296220 cites W2416170569 @default.
- W2000296220 cites W258129640 @default.
- W2000296220 cites W4243327552 @default.
- W2000296220 doi "https://doi.org/10.1016/j.ymeth.2010.10.005" @default.
- W2000296220 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3085554" @default.
- W2000296220 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21073955" @default.
- W2000296220 hasPublicationYear "2011" @default.
- W2000296220 type Work @default.
- W2000296220 sameAs 2000296220 @default.
- W2000296220 citedByCount "43" @default.
- W2000296220 countsByYear W20002962202012 @default.
- W2000296220 countsByYear W20002962202013 @default.
- W2000296220 countsByYear W20002962202014 @default.
- W2000296220 countsByYear W20002962202015 @default.
- W2000296220 countsByYear W20002962202016 @default.
- W2000296220 countsByYear W20002962202017 @default.
- W2000296220 countsByYear W20002962202018 @default.
- W2000296220 countsByYear W20002962202019 @default.
- W2000296220 countsByYear W20002962202020 @default.
- W2000296220 countsByYear W20002962202021 @default.
- W2000296220 countsByYear W20002962202022 @default.
- W2000296220 crossrefType "journal-article" @default.
- W2000296220 hasAuthorship W2000296220A5000149163 @default.
- W2000296220 hasBestOaLocation W20002962202 @default.
- W2000296220 hasConcept C10803110 @default.
- W2000296220 hasConcept C11413529 @default.
- W2000296220 hasConcept C121332964 @default.
- W2000296220 hasConcept C121864883 @default.
- W2000296220 hasConcept C135628077 @default.
- W2000296220 hasConcept C147597530 @default.
- W2000296220 hasConcept C148093993 @default.
- W2000296220 hasConcept C17744445 @default.
- W2000296220 hasConcept C185592680 @default.
- W2000296220 hasConcept C18762648 @default.
- W2000296220 hasConcept C19191322 @default.
- W2000296220 hasConcept C199539241 @default.
- W2000296220 hasConcept C204389451 @default.
- W2000296220 hasConcept C2776359362 @default.
- W2000296220 hasConcept C32909587 @default.
- W2000296220 hasConcept C38349280 @default.
- W2000296220 hasConcept C41008148 @default.