Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000308637> ?p ?o ?g. }
- W2000308637 endingPage "117" @default.
- W2000308637 startingPage "108" @default.
- W2000308637 abstract "Automatic multiple sclerosis lesion segmentation is a challenging task. An extensive analysis of the most recent techniques indicates an improvement of the results obtained when using prior knowledge and contextual information. We present BOOST, a knowledge-based approach to automatically segment multiple sclerosis lesions through a voxel by voxel classification. We used the Gentleboost classifier and a set of features, including contextual features, registered atlas probability maps and an outlier map. Results are computed on a set of 45 cases from three different hospitals (15 of each), obtaining a moderate agreement between the manual annotations and the automatically segmented results. We quantitatively compared our results with three public state-of-the-art approaches obtaining competitive results and a better overlap with manual annotations. Our approach tends to better segment those cases with high lesion load, while cases with small lesion load are more difficult to accurately segment. We believe BOOST has potential applicability in the clinical practice, although it should be improved in those cases with small lesion load." @default.
- W2000308637 created "2016-06-24" @default.
- W2000308637 creator A5027168396 @default.
- W2000308637 creator A5049566648 @default.
- W2000308637 creator A5060317108 @default.
- W2000308637 creator A5063275381 @default.
- W2000308637 creator A5064897887 @default.
- W2000308637 creator A5074191582 @default.
- W2000308637 creator A5077881500 @default.
- W2000308637 creator A5082890627 @default.
- W2000308637 creator A5085592048 @default.
- W2000308637 date "2014-11-01" @default.
- W2000308637 modified "2023-10-18" @default.
- W2000308637 title "BOOST: A supervised approach for multiple sclerosis lesion segmentation" @default.
- W2000308637 cites W1973457617 @default.
- W2000308637 cites W1989600436 @default.
- W2000308637 cites W1998070036 @default.
- W2000308637 cites W2013013146 @default.
- W2000308637 cites W2018017287 @default.
- W2000308637 cites W2021204548 @default.
- W2000308637 cites W2023363651 @default.
- W2000308637 cites W2023933689 @default.
- W2000308637 cites W2024046085 @default.
- W2000308637 cites W2028094999 @default.
- W2000308637 cites W2046432781 @default.
- W2000308637 cites W2046600620 @default.
- W2000308637 cites W2054279472 @default.
- W2000308637 cites W2071690793 @default.
- W2000308637 cites W2077041931 @default.
- W2000308637 cites W2085829822 @default.
- W2000308637 cites W2090659565 @default.
- W2000308637 cites W2095417127 @default.
- W2000308637 cites W2102099319 @default.
- W2000308637 cites W2102848905 @default.
- W2000308637 cites W2112282447 @default.
- W2000308637 cites W2113576511 @default.
- W2000308637 cites W2117340355 @default.
- W2000308637 cites W2123223785 @default.
- W2000308637 cites W2130686832 @default.
- W2000308637 cites W2132358780 @default.
- W2000308637 cites W2132513126 @default.
- W2000308637 cites W2150134853 @default.
- W2000308637 cites W2154158661 @default.
- W2000308637 cites W2155806188 @default.
- W2000308637 cites W2157848968 @default.
- W2000308637 cites W2159680539 @default.
- W2000308637 cites W2164777277 @default.
- W2000308637 cites W2168399612 @default.
- W2000308637 cites W2189173459 @default.
- W2000308637 cites W2977883299 @default.
- W2000308637 cites W4230920194 @default.
- W2000308637 cites W4241890711 @default.
- W2000308637 doi "https://doi.org/10.1016/j.jneumeth.2014.08.024" @default.
- W2000308637 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25194638" @default.
- W2000308637 hasPublicationYear "2014" @default.
- W2000308637 type Work @default.
- W2000308637 sameAs 2000308637 @default.
- W2000308637 citedByCount "29" @default.
- W2000308637 countsByYear W20003086372015 @default.
- W2000308637 countsByYear W20003086372016 @default.
- W2000308637 countsByYear W20003086372017 @default.
- W2000308637 countsByYear W20003086372018 @default.
- W2000308637 countsByYear W20003086372019 @default.
- W2000308637 countsByYear W20003086372020 @default.
- W2000308637 countsByYear W20003086372021 @default.
- W2000308637 countsByYear W20003086372022 @default.
- W2000308637 countsByYear W20003086372023 @default.
- W2000308637 crossrefType "journal-article" @default.
- W2000308637 hasAuthorship W2000308637A5027168396 @default.
- W2000308637 hasAuthorship W2000308637A5049566648 @default.
- W2000308637 hasAuthorship W2000308637A5060317108 @default.
- W2000308637 hasAuthorship W2000308637A5063275381 @default.
- W2000308637 hasAuthorship W2000308637A5064897887 @default.
- W2000308637 hasAuthorship W2000308637A5074191582 @default.
- W2000308637 hasAuthorship W2000308637A5077881500 @default.
- W2000308637 hasAuthorship W2000308637A5082890627 @default.
- W2000308637 hasAuthorship W2000308637A5085592048 @default.
- W2000308637 hasConcept C119857082 @default.
- W2000308637 hasConcept C142724271 @default.
- W2000308637 hasConcept C153180895 @default.
- W2000308637 hasConcept C154945302 @default.
- W2000308637 hasConcept C2781156865 @default.
- W2000308637 hasConcept C34736171 @default.
- W2000308637 hasConcept C41008148 @default.
- W2000308637 hasConcept C54170458 @default.
- W2000308637 hasConcept C71924100 @default.
- W2000308637 hasConcept C79337645 @default.
- W2000308637 hasConcept C89600930 @default.
- W2000308637 hasConcept C95623464 @default.
- W2000308637 hasConceptScore W2000308637C119857082 @default.
- W2000308637 hasConceptScore W2000308637C142724271 @default.
- W2000308637 hasConceptScore W2000308637C153180895 @default.
- W2000308637 hasConceptScore W2000308637C154945302 @default.
- W2000308637 hasConceptScore W2000308637C2781156865 @default.
- W2000308637 hasConceptScore W2000308637C34736171 @default.
- W2000308637 hasConceptScore W2000308637C41008148 @default.
- W2000308637 hasConceptScore W2000308637C54170458 @default.
- W2000308637 hasConceptScore W2000308637C71924100 @default.