Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000317833> ?p ?o ?g. }
- W2000317833 endingPage "25" @default.
- W2000317833 startingPage "25" @default.
- W2000317833 abstract "In small to moderate sample sizes it is important to make use of all the data when there are no outliers, for reasons of efficiency. It is equally important to guard against the possibility that there may be single or multiple outliers which can have disastrous effects on normal theory least squares estimation and inference. The purpose of this paper is to describe and illustrate the use of an adaptive regression estimation algorithm which can be used to highlight outliers, either single or multiple of varying number. The outliers can include 'bad' leverage points. Illustration is given of how 'good' leverage points are retained and 'bad' leverage points discarded. The adaptive regression estimator generalizes its high breakdown point adaptive location estimator counterpart and thus is expected to have high efficiency at the normal model. Simulations confirm this. On the other hand, examples demonstrate that the regression algorithm given highlights outliers and 'potential' outliers for closer scrutiny.The algorithm is computer intensive for the reason that it is a global algorithm which is designed to highlight outliers automatically. This also obviates the problem of searching out ``local minima encountered by some algorithms designed as fast search methods. Instead the objective here is to assess all observations and subsets of observations with the intention of culling all outliers which can range up to as much as approximately half the data. It is assumed that the distributional form of the data less outliers is approximately normal. If this distributional assumption fails, plots can be used to indicate such failure, and, transformations may be ;required before potential outliers are deemed as outliers. A well known set of data illustrates this point." @default.
- W2000317833 created "2016-06-24" @default.
- W2000317833 creator A5077376386 @default.
- W2000317833 date "2000-01-01" @default.
- W2000317833 modified "2023-10-13" @default.
- W2000317833 title "An adaptive method of estimation and outlier detection in regression applicable for small to moderate sample sizes" @default.
- W2000317833 cites W1531653575 @default.
- W2000317833 cites W1964886378 @default.
- W2000317833 cites W1966663528 @default.
- W2000317833 cites W1970655212 @default.
- W2000317833 cites W1988394726 @default.
- W2000317833 cites W2000148242 @default.
- W2000317833 cites W2003075516 @default.
- W2000317833 cites W2008332864 @default.
- W2000317833 cites W2011627547 @default.
- W2000317833 cites W2012712694 @default.
- W2000317833 cites W2012836768 @default.
- W2000317833 cites W2019609474 @default.
- W2000317833 cites W2023229267 @default.
- W2000317833 cites W2026001361 @default.
- W2000317833 cites W2029269896 @default.
- W2000317833 cites W2031261804 @default.
- W2000317833 cites W2034562813 @default.
- W2000317833 cites W2040730345 @default.
- W2000317833 cites W2049375977 @default.
- W2000317833 cites W2065914419 @default.
- W2000317833 cites W2068302187 @default.
- W2000317833 cites W2069519120 @default.
- W2000317833 cites W2093199042 @default.
- W2000317833 cites W2129249398 @default.
- W2000317833 cites W2130444042 @default.
- W2000317833 cites W2131881122 @default.
- W2000317833 cites W2145147745 @default.
- W2000317833 cites W2152701363 @default.
- W2000317833 cites W2155678210 @default.
- W2000317833 cites W2315646088 @default.
- W2000317833 cites W2316893165 @default.
- W2000317833 cites W2328425223 @default.
- W2000317833 cites W2332676380 @default.
- W2000317833 cites W2808075006 @default.
- W2000317833 cites W3167891112 @default.
- W2000317833 cites W36711357 @default.
- W2000317833 doi "https://doi.org/10.7151/dmps.1002" @default.
- W2000317833 hasPublicationYear "2000" @default.
- W2000317833 type Work @default.
- W2000317833 sameAs 2000317833 @default.
- W2000317833 citedByCount "9" @default.
- W2000317833 countsByYear W20003178332018 @default.
- W2000317833 countsByYear W20003178332022 @default.
- W2000317833 countsByYear W20003178332023 @default.
- W2000317833 crossrefType "journal-article" @default.
- W2000317833 hasAuthorship W2000317833A5077376386 @default.
- W2000317833 hasBestOaLocation W20003178332 @default.
- W2000317833 hasConcept C105795698 @default.
- W2000317833 hasConcept C129848803 @default.
- W2000317833 hasConcept C149782125 @default.
- W2000317833 hasConcept C152877465 @default.
- W2000317833 hasConcept C154945302 @default.
- W2000317833 hasConcept C162324750 @default.
- W2000317833 hasConcept C185592680 @default.
- W2000317833 hasConcept C187736073 @default.
- W2000317833 hasConcept C198531522 @default.
- W2000317833 hasConcept C33923547 @default.
- W2000317833 hasConcept C41008148 @default.
- W2000317833 hasConcept C43617362 @default.
- W2000317833 hasConcept C70259352 @default.
- W2000317833 hasConcept C739882 @default.
- W2000317833 hasConcept C79337645 @default.
- W2000317833 hasConcept C83546350 @default.
- W2000317833 hasConcept C96250715 @default.
- W2000317833 hasConceptScore W2000317833C105795698 @default.
- W2000317833 hasConceptScore W2000317833C129848803 @default.
- W2000317833 hasConceptScore W2000317833C149782125 @default.
- W2000317833 hasConceptScore W2000317833C152877465 @default.
- W2000317833 hasConceptScore W2000317833C154945302 @default.
- W2000317833 hasConceptScore W2000317833C162324750 @default.
- W2000317833 hasConceptScore W2000317833C185592680 @default.
- W2000317833 hasConceptScore W2000317833C187736073 @default.
- W2000317833 hasConceptScore W2000317833C198531522 @default.
- W2000317833 hasConceptScore W2000317833C33923547 @default.
- W2000317833 hasConceptScore W2000317833C41008148 @default.
- W2000317833 hasConceptScore W2000317833C43617362 @default.
- W2000317833 hasConceptScore W2000317833C70259352 @default.
- W2000317833 hasConceptScore W2000317833C739882 @default.
- W2000317833 hasConceptScore W2000317833C79337645 @default.
- W2000317833 hasConceptScore W2000317833C83546350 @default.
- W2000317833 hasConceptScore W2000317833C96250715 @default.
- W2000317833 hasIssue "1" @default.
- W2000317833 hasLocation W20003178331 @default.
- W2000317833 hasLocation W20003178332 @default.
- W2000317833 hasOpenAccess W2000317833 @default.
- W2000317833 hasPrimaryLocation W20003178331 @default.
- W2000317833 hasRelatedWork W1600426151 @default.
- W2000317833 hasRelatedWork W1833314573 @default.
- W2000317833 hasRelatedWork W2085680114 @default.
- W2000317833 hasRelatedWork W2295423552 @default.
- W2000317833 hasRelatedWork W2499612753 @default.
- W2000317833 hasRelatedWork W2946096271 @default.