Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000323971> ?p ?o ?g. }
- W2000323971 endingPage "228" @default.
- W2000323971 startingPage "203" @default.
- W2000323971 abstract "MAPSTAR is a medium-frequency imaging Doppler interferometer (IDI) radar. In this paper we describe the radar and present results from 34.5 h of data taken during the AIDA campaign in Puerto Rico during April 1989. The IDI method uses several independent antennas and receivers, pulsed sounding, range-gating, Doppler sorting and spatial interferometry to determine a three-dimensional Doppler image of the rf scatterers within the volume being illuminated. The analysis characterizes any perturbation in the index of refraction that returns rf energy (clear-air turbulence, scattering from striations, meteor trails, etc.) in terms of the three-dimensional locations, Doppler velocities and scattering amplitudes and phases of a number of apparent points in space, called ‘scattering points’. Scattering points are defined as those Fourier voltages whose phases on the several antennas agree on the direction in the sky of the source of that spectral power. We find that most of the power scattered from the mesosphere and E region can be described in this fashion. This allows us to replace, say, 10 complex voltages by two voltages and two coordinates locating the source. The IDI process is, en passant, a data-compression technique, reducing the data volume by a factor of 25–30 without losing any significant information. However, if we can so easily characterize the data as if discrete scattering points were responsible, the obvious question is: what physical processes do these scattering points actually represent? We don't complete an answer to this question here, but we do begin an answer with a description of some of their properties and behavior. We present in Section 2 a description of the hardware as designed and in Section 3 a description of its deployment in Puerto Rico, where the radar was tuned to 3.175 MHz and used the Arecibo Heating Facility's transmitters and transmitting antennas. In Section 4 we show the time domain data, in which the E region and several distinct mesospheric regions can be seen. We show the power vs altitude profile, which is typical of medium-frequency returns and describe the phase behavior of the returns, which can be used for tracking discrete targets such as TIDs and meteors. We describe in Section 5 the IDI algorithm, which involves Fourier transforming the several independent data streams and examining (for each pulse series, at each range-gate and at each Fourier frequency) the phases of the 10 complex Fourier voltages. When it is sufficiently accurate to represent the phase variations along the two linear distributions of antennas as linear with distance, we replace the 10 complex voltages with two voltages and two phase gradients. The data are thus cast into a form that is most easily interpreted as the result of scattering from a number of simultaneous discrete points. In Section 6 we describe some of the properties of these scattering points. The polarization properties of the points are shown first, since this is used for filtering the results that follow. We show the distribution of radial velocities with altitude for the ordinary, extraordinary and linear modes. The radial velocities show the characteristic mesospheric-scattering distribution of the ordinary-mode points (which was the transmitted mode), contrasted with the near-random distributions of the linear and extraordinary-mode points. This justifies the use of polarization filtering and introduces a powerful new filtering technique. Next we show the combined power of the scattering points (the ‘recovered’ power) and its variation with altitude and time. The recovered power looks very much like the raw power as usually seen by medium-frequency radars (one to several mesospheric regions plus the E region), except that it has somewhat better altitude resolution (being in altitude rather than range) and better low-altitude coverage due to ≈ 10 dB better signal/noise. Skymaps of the scattering points (i.e. their locations in the horizontal plane) are shown at several altitudes, showing the varying spread and sometimes asymmetry, in their distribution. We then show the variation of the recovered power with zenith angle, demonstrating the aspect sensitivity of the returns, from nearly specular at 60 80 km, spreading out to a maximum around 90 100 km and contracting sharply to very mirror-like above that. The motions of the scattering points are explored with contour maps of horizontal layers and by calculating their three-dimensional mean motions. Estimates of the calcultional uncertainties are made for the locations and motions of the points." @default.
- W2000323971 created "2016-06-24" @default.
- W2000323971 creator A5040479096 @default.
- W2000323971 creator A5059060037 @default.
- W2000323971 date "1993-03-01" @default.
- W2000323971 modified "2023-09-27" @default.
- W2000323971 title "The MAPSTAR imaging Doppler interferometer (IDI) radar: description and first results" @default.
- W2000323971 cites W1506145086 @default.
- W2000323971 cites W1613559169 @default.
- W2000323971 cites W1616953347 @default.
- W2000323971 cites W1633529777 @default.
- W2000323971 cites W1964251659 @default.
- W2000323971 cites W1964590846 @default.
- W2000323971 cites W1964680683 @default.
- W2000323971 cites W1966307383 @default.
- W2000323971 cites W1968508389 @default.
- W2000323971 cites W1976374636 @default.
- W2000323971 cites W1979263704 @default.
- W2000323971 cites W1980061041 @default.
- W2000323971 cites W1981202395 @default.
- W2000323971 cites W1982579199 @default.
- W2000323971 cites W1990825664 @default.
- W2000323971 cites W1994616358 @default.
- W2000323971 cites W1994854984 @default.
- W2000323971 cites W1995710442 @default.
- W2000323971 cites W1998518590 @default.
- W2000323971 cites W2002538685 @default.
- W2000323971 cites W2005799465 @default.
- W2000323971 cites W2007071493 @default.
- W2000323971 cites W2008960736 @default.
- W2000323971 cites W2014839775 @default.
- W2000323971 cites W2016109518 @default.
- W2000323971 cites W2026836196 @default.
- W2000323971 cites W2033694789 @default.
- W2000323971 cites W2034445314 @default.
- W2000323971 cites W2035467297 @default.
- W2000323971 cites W2039102234 @default.
- W2000323971 cites W2043860685 @default.
- W2000323971 cites W2050567489 @default.
- W2000323971 cites W2051040272 @default.
- W2000323971 cites W2051890957 @default.
- W2000323971 cites W2056116438 @default.
- W2000323971 cites W2056377899 @default.
- W2000323971 cites W2058370992 @default.
- W2000323971 cites W2061098336 @default.
- W2000323971 cites W2062301170 @default.
- W2000323971 cites W2067387988 @default.
- W2000323971 cites W2072496093 @default.
- W2000323971 cites W2076417478 @default.
- W2000323971 cites W2076635560 @default.
- W2000323971 cites W2082003141 @default.
- W2000323971 cites W2085588095 @default.
- W2000323971 cites W2085798123 @default.
- W2000323971 cites W2087198954 @default.
- W2000323971 cites W2089268576 @default.
- W2000323971 cites W2091597551 @default.
- W2000323971 cites W2093778060 @default.
- W2000323971 cites W2105888086 @default.
- W2000323971 cites W2130592547 @default.
- W2000323971 cites W2139673606 @default.
- W2000323971 cites W2152305033 @default.
- W2000323971 cites W2167956042 @default.
- W2000323971 cites W2170149004 @default.
- W2000323971 cites W2319538946 @default.
- W2000323971 cites W3196908180 @default.
- W2000323971 doi "https://doi.org/10.1016/0021-9169(93)90067-9" @default.
- W2000323971 hasPublicationYear "1993" @default.
- W2000323971 type Work @default.
- W2000323971 sameAs 2000323971 @default.
- W2000323971 citedByCount "28" @default.
- W2000323971 countsByYear W20003239712018 @default.
- W2000323971 crossrefType "journal-article" @default.
- W2000323971 hasAuthorship W2000323971A5040479096 @default.
- W2000323971 hasAuthorship W2000323971A5059060037 @default.
- W2000323971 hasConcept C120665830 @default.
- W2000323971 hasConcept C121332964 @default.
- W2000323971 hasConcept C127313418 @default.
- W2000323971 hasConcept C1276947 @default.
- W2000323971 hasConcept C142757262 @default.
- W2000323971 hasConcept C166689943 @default.
- W2000323971 hasConcept C191486275 @default.
- W2000323971 hasConcept C2778559676 @default.
- W2000323971 hasConcept C41008148 @default.
- W2000323971 hasConcept C554190296 @default.
- W2000323971 hasConcept C62649853 @default.
- W2000323971 hasConcept C76155785 @default.
- W2000323971 hasConceptScore W2000323971C120665830 @default.
- W2000323971 hasConceptScore W2000323971C121332964 @default.
- W2000323971 hasConceptScore W2000323971C127313418 @default.
- W2000323971 hasConceptScore W2000323971C1276947 @default.
- W2000323971 hasConceptScore W2000323971C142757262 @default.
- W2000323971 hasConceptScore W2000323971C166689943 @default.
- W2000323971 hasConceptScore W2000323971C191486275 @default.
- W2000323971 hasConceptScore W2000323971C2778559676 @default.
- W2000323971 hasConceptScore W2000323971C41008148 @default.
- W2000323971 hasConceptScore W2000323971C554190296 @default.
- W2000323971 hasConceptScore W2000323971C62649853 @default.
- W2000323971 hasConceptScore W2000323971C76155785 @default.