Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000329344> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2000329344 abstract "SPE Members Abstract in compositional reservoir simulation the ability of an Equation of State to accurately model the phase behavior is evaluated for both the Peng-Robinson and Soave-Redlich-Kwong Equations of Peng-Robinson and Soave-Redlich-Kwong Equations of State. The analysis was performed with pure component systems to circumvent the problem of pseudo-components and to allow a comparison of pseudo-components and to allow a comparison of calculated ternary diagrams with literature values. The initial work was performed with the binary system of methane and n-decane. The relative permeability of the slim tube was determined by the history matching of an immiscible slim tube displacement. The Equations of State were able to simulate the two-component displacements. PVT experiments were run with the three-component system of methane-propane-n-decane to provide data for a phase match of the Equations of State. The Equations of State with these phase matches were not able to simulate the multiple contact miscibility displacements in a slim tube. The sensitivity of the calculated results to the binary interaction coefficients and to the number of numerical grid blocks was studied. Introduction For several years the Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) Equations of State have been used to characterize hydrocarbon systems in the field of Reservoir Engineering. The majority of the systems studied are hydrocarbon fluids associated with an oil or gas field. These systems are very complex with thousands of hydrocarbon components. To reasonably calculate the phase behavior with the PR or SRK Equation of State, many components must be merged into pseudo-components with some average properties. The manner in which the components are grouped into these pseudo-components and how the pseudo-component's pseudo-components and how the pseudo-component's properties are determined, is a topic of much properties are determined, is a topic of much research-and discussion. When a fluid description, which contains several pseudo-components, has a difficult time matching the experimental phase behavior or a slim tube displacement with an Equation of State, one does not know where the problem lies. There are many choices, such as the distribution of pseudo-components, Tc, PC, and w of pseudo-components, Tc, PC, and w of pseudo-components, binary interaction coefficients or pseudo-components, binary interaction coefficients or the Equations of State themselves. The object of this research is to study the ability of the PR and SRK Equations of State to simulate phase behavior in a simple hydrocarbon system where there are no pseudo-components and where there exists published experimental results of the phase behavior and critical points. In this simplified hydrocarbon system, the number of parameters in the Equations of State available to parameters in the Equations of State available to match the phase behavior are limited. Thus one can easily see how well the PR and SRK Equations of State simulate the experimental results as the available parameters are varied. Ultimately, we will study the hydrocarbon system of methane-propane-n-decane. In preparation of the ternary study, we will look at the binary system of methane and n-decane to determine the relative permeability of the slim tube and to assess the ability of Equations of State to simulate a simple two-component slim type displacement, i.e., methane displacing n-decane. The Ternary system Of C1+C3+n-CIO represents a model real hydrocarbon system where C1 is the light, gas-like, component, C3 is the intermediate component, and n-C10 is the heavy component. Thus this system should behave more like a real oil but is much easier to analyze, i.e., no pseudo-components are necessary and experimental pseudo-components are necessary and experimental (published) ternary phase diagrams are available for comparison." @default.
- W2000329344 created "2016-06-24" @default.
- W2000329344 creator A5013286376 @default.
- W2000329344 creator A5029682023 @default.
- W2000329344 date "1985-09-22" @default.
- W2000329344 modified "2023-10-16" @default.
- W2000329344 title "The Simulation of Phase Behavior and Slim-Tube Displacements With Equations of State" @default.
- W2000329344 doi "https://doi.org/10.2118/14151-ms" @default.
- W2000329344 hasPublicationYear "1985" @default.
- W2000329344 type Work @default.
- W2000329344 sameAs 2000329344 @default.
- W2000329344 citedByCount "7" @default.
- W2000329344 countsByYear W20003293442012 @default.
- W2000329344 countsByYear W20003293442016 @default.
- W2000329344 countsByYear W20003293442021 @default.
- W2000329344 crossrefType "proceedings-article" @default.
- W2000329344 hasAuthorship W2000329344A5013286376 @default.
- W2000329344 hasAuthorship W2000329344A5029682023 @default.
- W2000329344 hasConcept C110884469 @default.
- W2000329344 hasConcept C121332964 @default.
- W2000329344 hasConcept C159985019 @default.
- W2000329344 hasConcept C178790620 @default.
- W2000329344 hasConcept C182283691 @default.
- W2000329344 hasConcept C185592680 @default.
- W2000329344 hasConcept C192562407 @default.
- W2000329344 hasConcept C2776692518 @default.
- W2000329344 hasConcept C2777207669 @default.
- W2000329344 hasConcept C33923547 @default.
- W2000329344 hasConcept C44280652 @default.
- W2000329344 hasConcept C48372109 @default.
- W2000329344 hasConcept C521977710 @default.
- W2000329344 hasConcept C53810900 @default.
- W2000329344 hasConcept C57879066 @default.
- W2000329344 hasConcept C62520636 @default.
- W2000329344 hasConcept C94375191 @default.
- W2000329344 hasConcept C97355855 @default.
- W2000329344 hasConceptScore W2000329344C110884469 @default.
- W2000329344 hasConceptScore W2000329344C121332964 @default.
- W2000329344 hasConceptScore W2000329344C159985019 @default.
- W2000329344 hasConceptScore W2000329344C178790620 @default.
- W2000329344 hasConceptScore W2000329344C182283691 @default.
- W2000329344 hasConceptScore W2000329344C185592680 @default.
- W2000329344 hasConceptScore W2000329344C192562407 @default.
- W2000329344 hasConceptScore W2000329344C2776692518 @default.
- W2000329344 hasConceptScore W2000329344C2777207669 @default.
- W2000329344 hasConceptScore W2000329344C33923547 @default.
- W2000329344 hasConceptScore W2000329344C44280652 @default.
- W2000329344 hasConceptScore W2000329344C48372109 @default.
- W2000329344 hasConceptScore W2000329344C521977710 @default.
- W2000329344 hasConceptScore W2000329344C53810900 @default.
- W2000329344 hasConceptScore W2000329344C57879066 @default.
- W2000329344 hasConceptScore W2000329344C62520636 @default.
- W2000329344 hasConceptScore W2000329344C94375191 @default.
- W2000329344 hasConceptScore W2000329344C97355855 @default.
- W2000329344 hasLocation W20003293441 @default.
- W2000329344 hasOpenAccess W2000329344 @default.
- W2000329344 hasPrimaryLocation W20003293441 @default.
- W2000329344 hasRelatedWork W1600384275 @default.
- W2000329344 hasRelatedWork W1991339456 @default.
- W2000329344 hasRelatedWork W1993306281 @default.
- W2000329344 hasRelatedWork W2017928090 @default.
- W2000329344 hasRelatedWork W2025459957 @default.
- W2000329344 hasRelatedWork W2051047040 @default.
- W2000329344 hasRelatedWork W2119135593 @default.
- W2000329344 hasRelatedWork W2592589656 @default.
- W2000329344 hasRelatedWork W2756263463 @default.
- W2000329344 hasRelatedWork W2899096911 @default.
- W2000329344 isParatext "false" @default.
- W2000329344 isRetracted "false" @default.
- W2000329344 magId "2000329344" @default.
- W2000329344 workType "article" @default.