Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000342362> ?p ?o ?g. }
- W2000342362 endingPage "254004" @default.
- W2000342362 startingPage "254004" @default.
- W2000342362 abstract "In this review, we consider a quasi-classical method applicable to integrable field theories which is based on a classical integrable structure?the algebraic curve. We apply it to the Green?Schwarz superstring on the AdS5 ? S5 space. We show that the proposed method reproduces perfectly the earlier results obtained by expanding the string action for some simple classical solutions. The construction is explicitly covariant and is not based on a particular parameterization of the fields and as a result is free from ambiguities. On the other hand, the finite size corrections in some particularly important scaling limit are studied in this paper for a system of Bethe equations. For the general superalgebra , the result for the 1/L corrections is obtained. We find an integral equation which describes these corrections in a closed form. As an application, we consider the conjectured Beisert?Staudacher (BS) equations with the Hernandez?Lopez dressing factor where the finite size corrections should reproduce quasi-classical results around a general classical solution. Indeed, we show that our integral equation can be interpreted as a sum of all physical fluctuations and thus prove the complete one-loop consistency of the BS equations. We demonstrate that any local conserved charge (including the AdS energy) computed from the BS equations is indeed given at one loop by the sum of the charges of fluctuations with an exponential precision for large S5 angular momentum of the string. As an independent result, the BS equations in an sub-sector were derived from Zamolodchikovs's S-matrix. The paper is based on the author's PhD thesis." @default.
- W2000342362 created "2016-06-24" @default.
- W2000342362 creator A5041807424 @default.
- W2000342362 date "2009-06-09" @default.
- W2000342362 modified "2023-09-25" @default.
- W2000342362 title "Integrability in AdS/CFT correspondence: quasi-classical analysis" @default.
- W2000342362 cites W1515427466 @default.
- W2000342362 cites W1559425867 @default.
- W2000342362 cites W1560118662 @default.
- W2000342362 cites W1579092542 @default.
- W2000342362 cites W1621258244 @default.
- W2000342362 cites W1668962387 @default.
- W2000342362 cites W1682487799 @default.
- W2000342362 cites W1784417176 @default.
- W2000342362 cites W1832734913 @default.
- W2000342362 cites W1889142700 @default.
- W2000342362 cites W1893761982 @default.
- W2000342362 cites W1931244805 @default.
- W2000342362 cites W1957612688 @default.
- W2000342362 cites W1965761237 @default.
- W2000342362 cites W1968193877 @default.
- W2000342362 cites W1973740390 @default.
- W2000342362 cites W1980102218 @default.
- W2000342362 cites W1986190426 @default.
- W2000342362 cites W1990204231 @default.
- W2000342362 cites W1992356325 @default.
- W2000342362 cites W2002456312 @default.
- W2000342362 cites W2002493520 @default.
- W2000342362 cites W2003008637 @default.
- W2000342362 cites W2012188123 @default.
- W2000342362 cites W2014316643 @default.
- W2000342362 cites W2019473800 @default.
- W2000342362 cites W2022247201 @default.
- W2000342362 cites W2025249777 @default.
- W2000342362 cites W2026653284 @default.
- W2000342362 cites W2032848135 @default.
- W2000342362 cites W2034902722 @default.
- W2000342362 cites W2037956175 @default.
- W2000342362 cites W2038561675 @default.
- W2000342362 cites W2043507979 @default.
- W2000342362 cites W2046357550 @default.
- W2000342362 cites W2046593861 @default.
- W2000342362 cites W2046824514 @default.
- W2000342362 cites W2048103727 @default.
- W2000342362 cites W2050450274 @default.
- W2000342362 cites W2060435746 @default.
- W2000342362 cites W2062430689 @default.
- W2000342362 cites W2064082366 @default.
- W2000342362 cites W2065129926 @default.
- W2000342362 cites W2067056901 @default.
- W2000342362 cites W2067065798 @default.
- W2000342362 cites W2069723005 @default.
- W2000342362 cites W2070293978 @default.
- W2000342362 cites W2072726469 @default.
- W2000342362 cites W2075359953 @default.
- W2000342362 cites W2076099204 @default.
- W2000342362 cites W2079548059 @default.
- W2000342362 cites W2079587372 @default.
- W2000342362 cites W2083877406 @default.
- W2000342362 cites W2084035031 @default.
- W2000342362 cites W2084768312 @default.
- W2000342362 cites W2089814304 @default.
- W2000342362 cites W2090153618 @default.
- W2000342362 cites W2091467417 @default.
- W2000342362 cites W2097413662 @default.
- W2000342362 cites W2097644671 @default.
- W2000342362 cites W2105909176 @default.
- W2000342362 cites W2112901496 @default.
- W2000342362 cites W2121317170 @default.
- W2000342362 cites W2123122881 @default.
- W2000342362 cites W2125550596 @default.
- W2000342362 cites W2128012089 @default.
- W2000342362 cites W2131323895 @default.
- W2000342362 cites W2136845184 @default.
- W2000342362 cites W2138554348 @default.
- W2000342362 cites W2151990752 @default.
- W2000342362 cites W2160645918 @default.
- W2000342362 cites W2162532099 @default.
- W2000342362 cites W2163931038 @default.
- W2000342362 cites W2167525103 @default.
- W2000342362 cites W2167820551 @default.
- W2000342362 cites W2171774752 @default.
- W2000342362 cites W2297935466 @default.
- W2000342362 cites W2763601025 @default.
- W2000342362 cites W2951841776 @default.
- W2000342362 cites W2963350420 @default.
- W2000342362 cites W3098168949 @default.
- W2000342362 cites W3098729617 @default.
- W2000342362 cites W3099687171 @default.
- W2000342362 cites W3099977794 @default.
- W2000342362 cites W3100079212 @default.
- W2000342362 cites W3100282457 @default.
- W2000342362 cites W3100401204 @default.
- W2000342362 cites W3101278528 @default.
- W2000342362 cites W3101588505 @default.
- W2000342362 cites W3101718555 @default.
- W2000342362 cites W3101746203 @default.
- W2000342362 cites W3101765018 @default.