Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000381402> ?p ?o ?g. }
- W2000381402 endingPage "8458" @default.
- W2000381402 startingPage "8451" @default.
- W2000381402 abstract "Reaction pathways and free energy barriers for alkaline hydrolysis of the highly neurotoxic insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds were studied by performing first-principles electronic structure calculations on representative methylphosphonofluoridates, (RO)CH3P(O)F, in which R = CH2CH2N+(CH3)3, CH3, CH2CH2C(CH3)3, CH2CH2CH(CH3)2, CH(CH3)CH2N+(CH3)3, and CH(CH3)CH2N(CH3)2. The dominant reaction pathway was found to be associated with a transition state in which the attacking nucleophile OH- and the leaving group F- are positioned on opposite sides of the plane formed by the three remaining atoms attached to the phosphorus in order to minimize the electrostatic repulsion between these two groups. The free energy barriers calculated for the rate-determining step of the dominant pathway are 12.5 kcal/mol when R = CH2CH2N+(CH3)3, 15.5 kcal/mol when R = CH3, 17.9 kcal/mol when R = CH2CH2C(CH3)3, 16.5 kcal/mol when R = CH2CH2CH(CH3)2, 13.4 kcal/mol when R = CH(CH3)CH2N+(CH3)3, and 18.7 kcal/mol when R = CH(CH(3))CH(2)N(CH(3))(2). The calculated free energy barriers are in good agreement with available experimentally derived activation free energies, i.e. 14.7 kcal/mol when R = CH(3), 13.4 kcal/mol when R = CH2CH2N+(CH3)3, and 13.9 kcal/mol when R = CH(CH3)CH2N+(CH3)3. A detailed analysis of the calculated energetic results and available experimental data suggests that the net charge of the molecule (M) being hydrolyzed is a prominent factor affecting the free energy barrier (DeltaG) for the alkaline hydrolysis of phosphodiesters, phosphonofluoridates, and related organophosphorus compounds. The electrostatic interactions between the attacking nucleophile OH- and the molecule M being hydrolyzed favor such an order of the free energy barrier: DeltaG(M(+)+OH-) < DeltaG(M0+OH-) < DeltaG(M(-)+OH-), where M+, M0, and M- represent the cationic, neutral, and anionic molecules, respectively. The change of the substituent R in (RO)CH(3)P(O)F from CH3 to CH2CH2N+(CH3)3 is associated with both the electrostatic and steric effects on the free energy barrier, but the electrostatic effect dominates the substituent shift of the free energy barrier. This helps to better understand why the alkaline hydrolysis of (RO)CH3P(O)F with R = CH2CH2N+(CH3)3 and CH(CH3)CH2N+(CH3)3 is significantly faster than that with R = CH3. The effect of electrostatic interaction also helps to understand why the rate constants for the alkaline hydrolysis of phosphodiesters, such as intramolecular second messenger adenosine 3',5'-phosphate (cAMP), are generally smaller than those for the alkaline hydrolysis of the phosphonofluoridates and related phosphotriesters." @default.
- W2000381402 created "2016-06-24" @default.
- W2000381402 creator A5010781606 @default.
- W2000381402 creator A5037378495 @default.
- W2000381402 date "2004-11-01" @default.
- W2000381402 modified "2023-10-16" @default.
- W2000381402 title "Reaction Pathways and Free Energy Barriers for Alkaline Hydrolysis of Insecticide 2-Trimethylammonioethyl Methylphosphonofluoridate and Related Organophosphorus Compounds: Electrostatic and Steric Effects" @default.
- W2000381402 cites W1963737263 @default.
- W2000381402 cites W1965045768 @default.
- W2000381402 cites W1966588813 @default.
- W2000381402 cites W1968287383 @default.
- W2000381402 cites W1970253631 @default.
- W2000381402 cites W1977392669 @default.
- W2000381402 cites W1978840198 @default.
- W2000381402 cites W1980635417 @default.
- W2000381402 cites W1986535019 @default.
- W2000381402 cites W1989065238 @default.
- W2000381402 cites W1989297397 @default.
- W2000381402 cites W1998657139 @default.
- W2000381402 cites W1998784561 @default.
- W2000381402 cites W1998927892 @default.
- W2000381402 cites W2000120708 @default.
- W2000381402 cites W2009425169 @default.
- W2000381402 cites W2011188904 @default.
- W2000381402 cites W2012027950 @default.
- W2000381402 cites W2012183926 @default.
- W2000381402 cites W2012349691 @default.
- W2000381402 cites W2014695909 @default.
- W2000381402 cites W2014767176 @default.
- W2000381402 cites W2016544825 @default.
- W2000381402 cites W2019609809 @default.
- W2000381402 cites W2021502908 @default.
- W2000381402 cites W2022226793 @default.
- W2000381402 cites W2022563581 @default.
- W2000381402 cites W2022950330 @default.
- W2000381402 cites W2023488932 @default.
- W2000381402 cites W2023807953 @default.
- W2000381402 cites W2024887480 @default.
- W2000381402 cites W2025267291 @default.
- W2000381402 cites W2025624195 @default.
- W2000381402 cites W2027268770 @default.
- W2000381402 cites W2028324262 @default.
- W2000381402 cites W2038147275 @default.
- W2000381402 cites W2039998738 @default.
- W2000381402 cites W2042715053 @default.
- W2000381402 cites W2050365854 @default.
- W2000381402 cites W2053071917 @default.
- W2000381402 cites W2054617244 @default.
- W2000381402 cites W2054730070 @default.
- W2000381402 cites W2058571867 @default.
- W2000381402 cites W2061184651 @default.
- W2000381402 cites W2061950747 @default.
- W2000381402 cites W2062537611 @default.
- W2000381402 cites W2063993118 @default.
- W2000381402 cites W2064761203 @default.
- W2000381402 cites W2066315998 @default.
- W2000381402 cites W2075250207 @default.
- W2000381402 cites W2076953820 @default.
- W2000381402 cites W2077704962 @default.
- W2000381402 cites W2079458939 @default.
- W2000381402 cites W2089167050 @default.
- W2000381402 cites W2089459862 @default.
- W2000381402 cites W2090492357 @default.
- W2000381402 cites W2090738641 @default.
- W2000381402 cites W2091439178 @default.
- W2000381402 cites W2113947357 @default.
- W2000381402 cites W2299621452 @default.
- W2000381402 cites W2326839069 @default.
- W2000381402 cites W2950901191 @default.
- W2000381402 doi "https://doi.org/10.1021/jo0487597" @default.
- W2000381402 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15549820" @default.
- W2000381402 hasPublicationYear "2004" @default.
- W2000381402 type Work @default.
- W2000381402 sameAs 2000381402 @default.
- W2000381402 citedByCount "24" @default.
- W2000381402 countsByYear W20003814022012 @default.
- W2000381402 countsByYear W20003814022013 @default.
- W2000381402 countsByYear W20003814022014 @default.
- W2000381402 countsByYear W20003814022015 @default.
- W2000381402 countsByYear W20003814022017 @default.
- W2000381402 countsByYear W20003814022018 @default.
- W2000381402 countsByYear W20003814022021 @default.
- W2000381402 countsByYear W20003814022022 @default.
- W2000381402 countsByYear W20003814022023 @default.
- W2000381402 crossrefType "journal-article" @default.
- W2000381402 hasAuthorship W2000381402A5010781606 @default.
- W2000381402 hasAuthorship W2000381402A5037378495 @default.
- W2000381402 hasConcept C147597530 @default.
- W2000381402 hasConcept C147789679 @default.
- W2000381402 hasConcept C155647269 @default.
- W2000381402 hasConcept C161790260 @default.
- W2000381402 hasConcept C178790620 @default.
- W2000381402 hasConcept C178907741 @default.
- W2000381402 hasConcept C185592680 @default.
- W2000381402 hasConcept C201194858 @default.
- W2000381402 hasConcept C41339378 @default.
- W2000381402 hasConcept C71240020 @default.
- W2000381402 hasConcept C8010536 @default.