Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000394930> ?p ?o ?g. }
- W2000394930 endingPage "529" @default.
- W2000394930 startingPage "513" @default.
- W2000394930 abstract "Mg‐Fe and Mg‐Ni interdiffusion coefficients have been measured in single‐crystal olivine (α‐(Mg,Ni,Fe) 2 SiO 4 ), polycrystalline β phase (β‐(Mg,Ni,Fe) 2 SiO 4 ), and silicate spinel (γ‐(Mg,Ni,Fe) 2 SiO 4 ) at 1473 K between 1 and 14 GPa under controlled thermodynamic conditions. In olivine, D Mg‐Ni α ranges from 10 −17 m 2 s −1 at 1 GPa to 4×10 −18 m 2 s −1 at 9 GPa, and D Mg‐Fe α ranges from 3×10 −15 m 2 s −1 at 1 GPa to 10 −15 m 2 s −1 at 4 GPa. At 9 GPa the cation diffusion rates in γ spinel are ∼3 orders of magnitude higher than those in olivine; between 9 and 14 GPa, D Mg‐Ni γ decreases from 8×10 −15 to 9×10 −16 m 2 s −1 , and D Mg‐Fe γ decreases from 2×10 −13 to 5×10 −14 m 2 s −1 . Between 10 and 14 GPa the diffusion coefficients for both Fe and Ni are similar in magnitude and pressure dependence between β phase and γ spinel. The activation volumes for Mg‐Ni diffusion are 3.2 and 6.7 cm 3 mol −1 in the α and γ(β) phases, respectively, and for Mg‐Fe diffusion are 5.4 and 6.1 cm 3 mol −1 in the α and γ(β) phases, respectively. Our results demonstrate that extreme differences in transport properties are expected to occur across the 400 km discontinuity. A model for electrical conductivity in the upper mantle involving two mechanisms for electrical conduction, with one mechanism being associated with a hydrogen or defect‐related conduction process and the other involving a straightforward application of the Nernst‐Einstein equation to our cationic diffusion data, reproduces geomagnetic sounding results for the upper mantle and shallow transition zone. This modeling yields an order of magnitude increase in electrical conductivity across the 400 km discontinuity, with little or no change in conductivity occurring near 520 km depth. Our modeling suggests that divalent cation diffusion is the dominant mechanism of charge transport between 400 and 670 km depth and that the high‐pressure olivine polymorphs dominate the electrical behavior of the deep upper mantle. Comparison between field‐based deep‐mantle conductivity profiles derived from magnetotelluric studies and extrapolation of our model suggests that a discontinuity in electrical transport properties exists at the base of the transition zone as well. Similarly, given the dramatic differences in chemical diffusion between different polymorphs of olivine, it is possible that other transport property‐mediated processes, such as viscous flow, could dramatically change across the 400 and 670 km discontinuities; such changes are less likely to occur at 520 km depth." @default.
- W2000394930 created "2016-06-24" @default.
- W2000394930 creator A5039831019 @default.
- W2000394930 creator A5064377698 @default.
- W2000394930 creator A5089482351 @default.
- W2000394930 date "2000-01-10" @default.
- W2000394930 modified "2023-10-18" @default.
- W2000394930 title "Divalent cation diffusion in Mg<sub>2</sub>SiO<sub>4</sub> spinel (ringwoodite), β phase (wadsleyite), and olivine: Implications for the electrical conductivity of the mantle" @default.
- W2000394930 cites W101219915 @default.
- W2000394930 cites W1040416131 @default.
- W2000394930 cites W1562391436 @default.
- W2000394930 cites W1615863471 @default.
- W2000394930 cites W1673037937 @default.
- W2000394930 cites W1963707973 @default.
- W2000394930 cites W1973889129 @default.
- W2000394930 cites W1974013445 @default.
- W2000394930 cites W1981467094 @default.
- W2000394930 cites W1983655078 @default.
- W2000394930 cites W1984320389 @default.
- W2000394930 cites W1988151263 @default.
- W2000394930 cites W1988242530 @default.
- W2000394930 cites W1989240732 @default.
- W2000394930 cites W1996093825 @default.
- W2000394930 cites W1996336236 @default.
- W2000394930 cites W2001116922 @default.
- W2000394930 cites W2001754800 @default.
- W2000394930 cites W2004124129 @default.
- W2000394930 cites W2005478382 @default.
- W2000394930 cites W2005481160 @default.
- W2000394930 cites W2006352148 @default.
- W2000394930 cites W2007074553 @default.
- W2000394930 cites W2009003566 @default.
- W2000394930 cites W2012746647 @default.
- W2000394930 cites W2015072560 @default.
- W2000394930 cites W2016975469 @default.
- W2000394930 cites W2017574277 @default.
- W2000394930 cites W2017771671 @default.
- W2000394930 cites W2020950786 @default.
- W2000394930 cites W2022970992 @default.
- W2000394930 cites W2023709137 @default.
- W2000394930 cites W2025977604 @default.
- W2000394930 cites W2026462597 @default.
- W2000394930 cites W2028194026 @default.
- W2000394930 cites W2028766536 @default.
- W2000394930 cites W2029345429 @default.
- W2000394930 cites W2030092125 @default.
- W2000394930 cites W2031928164 @default.
- W2000394930 cites W2043059593 @default.
- W2000394930 cites W2051748599 @default.
- W2000394930 cites W2052022364 @default.
- W2000394930 cites W2053441820 @default.
- W2000394930 cites W2061409215 @default.
- W2000394930 cites W2063349046 @default.
- W2000394930 cites W2064185333 @default.
- W2000394930 cites W2065726248 @default.
- W2000394930 cites W2067602432 @default.
- W2000394930 cites W2070028456 @default.
- W2000394930 cites W2072788722 @default.
- W2000394930 cites W2073021113 @default.
- W2000394930 cites W2074744660 @default.
- W2000394930 cites W2079295948 @default.
- W2000394930 cites W2079640786 @default.
- W2000394930 cites W2082536792 @default.
- W2000394930 cites W2083935149 @default.
- W2000394930 cites W2088637443 @default.
- W2000394930 cites W2090199369 @default.
- W2000394930 cites W2092024342 @default.
- W2000394930 cites W2099600615 @default.
- W2000394930 cites W2100228864 @default.
- W2000394930 cites W2110197060 @default.
- W2000394930 cites W2116519903 @default.
- W2000394930 cites W2137329297 @default.
- W2000394930 cites W2137908527 @default.
- W2000394930 cites W2147884637 @default.
- W2000394930 cites W2155739092 @default.
- W2000394930 cites W2168607092 @default.
- W2000394930 cites W2169195521 @default.
- W2000394930 cites W2171080498 @default.
- W2000394930 cites W2566934992 @default.
- W2000394930 cites W66844374 @default.
- W2000394930 doi "https://doi.org/10.1029/1999jb900145" @default.
- W2000394930 hasPublicationYear "2000" @default.
- W2000394930 type Work @default.
- W2000394930 sameAs 2000394930 @default.
- W2000394930 citedByCount "38" @default.
- W2000394930 countsByYear W20003949302013 @default.
- W2000394930 countsByYear W20003949302014 @default.
- W2000394930 countsByYear W20003949302015 @default.
- W2000394930 countsByYear W20003949302017 @default.
- W2000394930 countsByYear W20003949302019 @default.
- W2000394930 countsByYear W20003949302020 @default.
- W2000394930 countsByYear W20003949302021 @default.
- W2000394930 crossrefType "journal-article" @default.
- W2000394930 hasAuthorship W2000394930A5039831019 @default.
- W2000394930 hasAuthorship W2000394930A5064377698 @default.
- W2000394930 hasAuthorship W2000394930A5089482351 @default.
- W2000394930 hasConcept C113196181 @default.
- W2000394930 hasConcept C121332964 @default.