Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000408111> ?p ?o ?g. }
- W2000408111 endingPage "164" @default.
- W2000408111 startingPage "147" @default.
- W2000408111 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 437:147-164 (2011) - DOI: https://doi.org/10.3354/meps09268 The exhalant jet of mussels Mytilus edulis Hans Ulrik Riisgård1,*, Bo Hoffmann Jørgensen2, Kim Lundgreen1, Francesca Storti2, Jens Honore Walther2,3, Knud Erik Meyer2, Poul S. Larsen2 1Marine Biological Research Centre, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark 2DTU Mechanical Engineering, Fluid Mechanics, Technical University of Denmark, Building 403, 2800 Kgs. Lyngby, Denmark 3Chair of Computational Science, ETH Zurich, 8092 Switzerland *Email: hur@biology.sdu.dk ABSTRACT: The exhalant jet flow of mussels in conjunction with currents and/or other mussels may strongly influence the mussels’ grazing impact. Literature values of mussel exhalant jet velocity vary considerably and the detailed fluid mechanics of the near-mussel flow generated by the exhalant jet has hitherto been uncertain. Computational modelling of this phenomenon depends on knowledge of the velocity distribution near the exhalant siphon aperture of mussels to provide appropriate boundary conditions for numerical flow models. To be useful such information should be available for a range of mussel shell lengths. Here, we present results of a detailed study of fully open mussels Mytilus edulis in terms of filtration rate, exhalant siphon aperture area, jet velocity, gill area and body dry weight, all as a function of shell length (mean ± SD) over the range 16.0 ± 0.4 to 82.6 ± 2.9 mm, with the corresponding scaling laws also presented. The exhalant jet velocity was determined by 3 methods: (1) measured clearance rate divided by exhalant aperture area, (2) manual particle tracking velocimetry (PTV) using video-microscope recordings, and (3) particle image velocimetry (PIV). The latter provides detailed 2-component velocity distributions near the exhalant siphon in 5 planes parallel to the axis of the jet and the major axis of the oval aperture, and hence estimates of momentum and kinetic energy flows in addition to mean velocity. Data obtained on particles inside the exhalant jet of filtered water was verified by the use of titanium dioxide seeding particles which were de-agglomerated by ultrasound to a size range of 0.7 to 2 µm prior to addition, to avoid retention by the gill filter of the mussels. We found that exhalant jet velocity was essentially constant at ~8 cm s−1, and independent of shell length. Based on geometric similarity and scaling of mussel pump-system characteristics we found that these characteristics coincide approximately for all sizes when expressed as pressure head versus volume flow divided by shell length squared. KEY WORDS: Filtration rate · Exhalant siphon area · Particle image velocimetry · Particle tracking velocimetry · Exhalant jet velocity · Velocity field · Allometric equation · Scaling law Full text in pdf format PreviousNextCite this article as: Riisgård HU, Hoffmann Jørgensen B, Lundgreen K, Storti F, Walther JH, Meyer KE, Larsen PS (2011) The exhalant jet of mussels Mytilus edulis. Mar Ecol Prog Ser 437:147-164. https://doi.org/10.3354/meps09268 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 437. Online publication date: September 15, 2011 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2011 Inter-Research." @default.
- W2000408111 created "2016-06-24" @default.
- W2000408111 creator A5002405916 @default.
- W2000408111 creator A5010077082 @default.
- W2000408111 creator A5014679484 @default.
- W2000408111 creator A5015609443 @default.
- W2000408111 creator A5026581735 @default.
- W2000408111 creator A5053643200 @default.
- W2000408111 creator A5061845872 @default.
- W2000408111 date "2011-09-15" @default.
- W2000408111 modified "2023-09-25" @default.
- W2000408111 title "The exhalant jet of mussels Mytilus edulis" @default.
- W2000408111 cites W1530365213 @default.
- W2000408111 cites W1553445333 @default.
- W2000408111 cites W1870705055 @default.
- W2000408111 cites W1972872886 @default.
- W2000408111 cites W1976078623 @default.
- W2000408111 cites W1979919341 @default.
- W2000408111 cites W1983363240 @default.
- W2000408111 cites W1992927960 @default.
- W2000408111 cites W1997380570 @default.
- W2000408111 cites W1998552801 @default.
- W2000408111 cites W1999064791 @default.
- W2000408111 cites W2002577120 @default.
- W2000408111 cites W2003395482 @default.
- W2000408111 cites W2006715309 @default.
- W2000408111 cites W2007977539 @default.
- W2000408111 cites W2013572394 @default.
- W2000408111 cites W2017083813 @default.
- W2000408111 cites W2019493696 @default.
- W2000408111 cites W2021021441 @default.
- W2000408111 cites W2027506630 @default.
- W2000408111 cites W2028061675 @default.
- W2000408111 cites W2030475203 @default.
- W2000408111 cites W2032919689 @default.
- W2000408111 cites W2035174125 @default.
- W2000408111 cites W2057187266 @default.
- W2000408111 cites W2061595664 @default.
- W2000408111 cites W2063850008 @default.
- W2000408111 cites W2065580523 @default.
- W2000408111 cites W2067037361 @default.
- W2000408111 cites W2071044041 @default.
- W2000408111 cites W2071089286 @default.
- W2000408111 cites W2071367907 @default.
- W2000408111 cites W2071855301 @default.
- W2000408111 cites W2076962484 @default.
- W2000408111 cites W2079161306 @default.
- W2000408111 cites W2086192200 @default.
- W2000408111 cites W2087389416 @default.
- W2000408111 cites W2089846817 @default.
- W2000408111 cites W2107004681 @default.
- W2000408111 cites W2109067183 @default.
- W2000408111 cites W2115616265 @default.
- W2000408111 cites W2127117221 @default.
- W2000408111 cites W2127517246 @default.
- W2000408111 cites W2130461280 @default.
- W2000408111 cites W2143323226 @default.
- W2000408111 cites W2144985261 @default.
- W2000408111 cites W2154709520 @default.
- W2000408111 cites W2171042187 @default.
- W2000408111 cites W3047197593 @default.
- W2000408111 cites W4235494105 @default.
- W2000408111 cites W4298478607 @default.
- W2000408111 doi "https://doi.org/10.3354/meps09268" @default.
- W2000408111 hasPublicationYear "2011" @default.
- W2000408111 type Work @default.
- W2000408111 sameAs 2000408111 @default.
- W2000408111 citedByCount "33" @default.
- W2000408111 countsByYear W20004081112013 @default.
- W2000408111 countsByYear W20004081112014 @default.
- W2000408111 countsByYear W20004081112015 @default.
- W2000408111 countsByYear W20004081112016 @default.
- W2000408111 countsByYear W20004081112017 @default.
- W2000408111 countsByYear W20004081112019 @default.
- W2000408111 countsByYear W20004081112020 @default.
- W2000408111 countsByYear W20004081112021 @default.
- W2000408111 countsByYear W20004081112022 @default.
- W2000408111 crossrefType "journal-article" @default.
- W2000408111 hasAuthorship W2000408111A5002405916 @default.
- W2000408111 hasAuthorship W2000408111A5010077082 @default.
- W2000408111 hasAuthorship W2000408111A5014679484 @default.
- W2000408111 hasAuthorship W2000408111A5015609443 @default.
- W2000408111 hasAuthorship W2000408111A5026581735 @default.
- W2000408111 hasAuthorship W2000408111A5053643200 @default.
- W2000408111 hasAuthorship W2000408111A5061845872 @default.
- W2000408111 hasBestOaLocation W20004081111 @default.
- W2000408111 hasConcept C119947313 @default.
- W2000408111 hasConcept C121332964 @default.
- W2000408111 hasConcept C163629137 @default.
- W2000408111 hasConcept C18903297 @default.
- W2000408111 hasConcept C2776249982 @default.
- W2000408111 hasConcept C2779586492 @default.
- W2000408111 hasConcept C2779909984 @default.
- W2000408111 hasConcept C2779987062 @default.
- W2000408111 hasConcept C505870484 @default.
- W2000408111 hasConcept C57879066 @default.
- W2000408111 hasConcept C86803240 @default.
- W2000408111 hasConceptScore W2000408111C119947313 @default.