Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000409585> ?p ?o ?g. }
- W2000409585 endingPage "334" @default.
- W2000409585 startingPage "324" @default.
- W2000409585 abstract "Discretization of continuous attributes is an important task in rough sets and many discretization algorithms have been proposed. However, most of the current discretization algorithms are univariate, which may reduce the classification ability of a given decision table. To solve this problem, we propose a supervised and multivariate discretization algorithm — SMDNS in rough sets, which is derived from the traditional algorithm naive scaler (called Naive). Given a decision table DT=(U,C,D,V,f), since SMDNS uses both class information and the interdependence among various condition attributes in C to determine the discretization scheme, the cuts obtained by SMDNS are much less than those obtained by Naive, while the classification ability of DT remains unchanged after discretization. Experimental results show that SMDNS is efficient in terms of the classification accuracy and the number of generated cuts. In particular, our algorithm can obtain a satisfactory compromise between the number of cuts and the classification accuracy." @default.
- W2000409585 created "2016-06-24" @default.
- W2000409585 creator A5025741195 @default.
- W2000409585 creator A5082731236 @default.
- W2000409585 date "2015-01-01" @default.
- W2000409585 modified "2023-10-13" @default.
- W2000409585 title "A novel approach for discretization of continuous attributes in rough set theory" @default.
- W2000409585 cites W1978603136 @default.
- W2000409585 cites W1988334416 @default.
- W2000409585 cites W1995126785 @default.
- W2000409585 cites W2005929752 @default.
- W2000409585 cites W2024638676 @default.
- W2000409585 cites W2033099886 @default.
- W2000409585 cites W2042475680 @default.
- W2000409585 cites W2047872178 @default.
- W2000409585 cites W2049105561 @default.
- W2000409585 cites W2053623704 @default.
- W2000409585 cites W2056784354 @default.
- W2000409585 cites W2056917745 @default.
- W2000409585 cites W2074924176 @default.
- W2000409585 cites W2077183117 @default.
- W2000409585 cites W2091886223 @default.
- W2000409585 cites W2111011053 @default.
- W2000409585 cites W2118978333 @default.
- W2000409585 cites W2135511047 @default.
- W2000409585 cites W2140349414 @default.
- W2000409585 cites W2158633287 @default.
- W2000409585 cites W2160671582 @default.
- W2000409585 cites W2163370485 @default.
- W2000409585 cites W2167277498 @default.
- W2000409585 cites W2170595610 @default.
- W2000409585 cites W4244238212 @default.
- W2000409585 cites W4249215961 @default.
- W2000409585 cites W4255833381 @default.
- W2000409585 doi "https://doi.org/10.1016/j.knosys.2014.10.014" @default.
- W2000409585 hasPublicationYear "2015" @default.
- W2000409585 type Work @default.
- W2000409585 sameAs 2000409585 @default.
- W2000409585 citedByCount "54" @default.
- W2000409585 countsByYear W20004095852015 @default.
- W2000409585 countsByYear W20004095852016 @default.
- W2000409585 countsByYear W20004095852017 @default.
- W2000409585 countsByYear W20004095852018 @default.
- W2000409585 countsByYear W20004095852019 @default.
- W2000409585 countsByYear W20004095852020 @default.
- W2000409585 countsByYear W20004095852021 @default.
- W2000409585 countsByYear W20004095852022 @default.
- W2000409585 countsByYear W20004095852023 @default.
- W2000409585 crossrefType "journal-article" @default.
- W2000409585 hasAuthorship W2000409585A5025741195 @default.
- W2000409585 hasAuthorship W2000409585A5082731236 @default.
- W2000409585 hasConcept C105427703 @default.
- W2000409585 hasConcept C111012933 @default.
- W2000409585 hasConcept C11413529 @default.
- W2000409585 hasConcept C119857082 @default.
- W2000409585 hasConcept C124101348 @default.
- W2000409585 hasConcept C126148662 @default.
- W2000409585 hasConcept C126255220 @default.
- W2000409585 hasConcept C134306372 @default.
- W2000409585 hasConcept C154945302 @default.
- W2000409585 hasConcept C161584116 @default.
- W2000409585 hasConcept C172967692 @default.
- W2000409585 hasConcept C177264268 @default.
- W2000409585 hasConcept C199163554 @default.
- W2000409585 hasConcept C199360897 @default.
- W2000409585 hasConcept C2777212361 @default.
- W2000409585 hasConcept C33923547 @default.
- W2000409585 hasConcept C41008148 @default.
- W2000409585 hasConcept C73000952 @default.
- W2000409585 hasConceptScore W2000409585C105427703 @default.
- W2000409585 hasConceptScore W2000409585C111012933 @default.
- W2000409585 hasConceptScore W2000409585C11413529 @default.
- W2000409585 hasConceptScore W2000409585C119857082 @default.
- W2000409585 hasConceptScore W2000409585C124101348 @default.
- W2000409585 hasConceptScore W2000409585C126148662 @default.
- W2000409585 hasConceptScore W2000409585C126255220 @default.
- W2000409585 hasConceptScore W2000409585C134306372 @default.
- W2000409585 hasConceptScore W2000409585C154945302 @default.
- W2000409585 hasConceptScore W2000409585C161584116 @default.
- W2000409585 hasConceptScore W2000409585C172967692 @default.
- W2000409585 hasConceptScore W2000409585C177264268 @default.
- W2000409585 hasConceptScore W2000409585C199163554 @default.
- W2000409585 hasConceptScore W2000409585C199360897 @default.
- W2000409585 hasConceptScore W2000409585C2777212361 @default.
- W2000409585 hasConceptScore W2000409585C33923547 @default.
- W2000409585 hasConceptScore W2000409585C41008148 @default.
- W2000409585 hasConceptScore W2000409585C73000952 @default.
- W2000409585 hasFunder F4320321001 @default.
- W2000409585 hasLocation W20004095851 @default.
- W2000409585 hasOpenAccess W2000409585 @default.
- W2000409585 hasPrimaryLocation W20004095851 @default.
- W2000409585 hasRelatedWork W146891625 @default.
- W2000409585 hasRelatedWork W2000409585 @default.
- W2000409585 hasRelatedWork W2061139474 @default.
- W2000409585 hasRelatedWork W2213307371 @default.
- W2000409585 hasRelatedWork W2351424227 @default.
- W2000409585 hasRelatedWork W2353840102 @default.
- W2000409585 hasRelatedWork W2372796568 @default.