Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000435310> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2000435310 endingPage "3058" @default.
- W2000435310 startingPage "3048" @default.
- W2000435310 abstract "In this paper, we study the dynamic density autocorrelation function $G(mathbf{r},t)$ for smectic-$A$ films in the layer sliding geometry. We first postulate a scaling form for G, and then we show that our postulated scaling form holds by comparing the scaling predictions with detailed numerical calculations. We find some deviations from the scaling form only for very thin films. For thick films, we find a region of a bulklike behavior, where the dynamics is characterized by the same static critical exponent $ensuremath{eta},$ which was originally introduced by Caill'e [C. R. Acad. Sci. Ser. B 274, 891 (1972)]. In the limit of very large distance perpendicular to the layer normal, or in the limit of very long time, we find that the decay of G is governed by the surface exponent $ensuremath{chi}{=k}_{B}{mathrm{Tq}}_{z}^{2}/(4ensuremath{pi}ensuremath{gamma}),$ where $ensuremath{gamma}$ is the surface tension and the wave-vector component ${q}_{z}$ satisfies the Bragg condition. We also find an intermediate perpendicular distance regime in which the decay of G is governed by the time-dependent exponent $ensuremath{chi}mathrm{exp}(ensuremath{-}t/{ensuremath{tau}}_{0}),$ where the relaxation time is given by ${ensuremath{tau}}_{0}={ensuremath{eta}}_{3}(mathrm{Ld})/(2ensuremath{gamma}),$ where ${ensuremath{eta}}_{3}$ is the layer sliding viscosity, and $mathrm{Ld}$ is the film thickness." @default.
- W2000435310 created "2016-06-24" @default.
- W2000435310 creator A5021258352 @default.
- W2000435310 creator A5026191381 @default.
- W2000435310 creator A5062243522 @default.
- W2000435310 creator A5065303528 @default.
- W2000435310 date "1999-03-01" @default.
- W2000435310 modified "2023-09-24" @default.
- W2000435310 title "Dynamic critical behavior of the Landau-Peierls fluctuations: Scaling form of the dynamic density autocorrelation function for smectic-<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>A</mml:mi></mml:math>films" @default.
- W2000435310 cites W1660471393 @default.
- W2000435310 cites W1968923823 @default.
- W2000435310 cites W1981432814 @default.
- W2000435310 cites W1982243376 @default.
- W2000435310 cites W1983115073 @default.
- W2000435310 cites W1983584198 @default.
- W2000435310 cites W2008549422 @default.
- W2000435310 cites W2013049691 @default.
- W2000435310 cites W2028897090 @default.
- W2000435310 cites W2039410564 @default.
- W2000435310 cites W2048853642 @default.
- W2000435310 cites W2063582422 @default.
- W2000435310 cites W2073023433 @default.
- W2000435310 cites W2078643431 @default.
- W2000435310 cites W2085287616 @default.
- W2000435310 cites W2094046920 @default.
- W2000435310 cites W2115284176 @default.
- W2000435310 cites W2117493055 @default.
- W2000435310 cites W2312252715 @default.
- W2000435310 cites W2320088883 @default.
- W2000435310 doi "https://doi.org/10.1103/physreve.59.3048" @default.
- W2000435310 hasPublicationYear "1999" @default.
- W2000435310 type Work @default.
- W2000435310 sameAs 2000435310 @default.
- W2000435310 citedByCount "23" @default.
- W2000435310 countsByYear W20004353102015 @default.
- W2000435310 countsByYear W20004353102023 @default.
- W2000435310 crossrefType "journal-article" @default.
- W2000435310 hasAuthorship W2000435310A5021258352 @default.
- W2000435310 hasAuthorship W2000435310A5026191381 @default.
- W2000435310 hasAuthorship W2000435310A5062243522 @default.
- W2000435310 hasAuthorship W2000435310A5065303528 @default.
- W2000435310 hasConcept C105795698 @default.
- W2000435310 hasConcept C121332964 @default.
- W2000435310 hasConcept C138885662 @default.
- W2000435310 hasConcept C15744967 @default.
- W2000435310 hasConcept C2524010 @default.
- W2000435310 hasConcept C26873012 @default.
- W2000435310 hasConcept C2776029896 @default.
- W2000435310 hasConcept C2780388253 @default.
- W2000435310 hasConcept C33923547 @default.
- W2000435310 hasConcept C37914503 @default.
- W2000435310 hasConcept C41895202 @default.
- W2000435310 hasConcept C5297727 @default.
- W2000435310 hasConcept C77805123 @default.
- W2000435310 hasConcept C99844830 @default.
- W2000435310 hasConceptScore W2000435310C105795698 @default.
- W2000435310 hasConceptScore W2000435310C121332964 @default.
- W2000435310 hasConceptScore W2000435310C138885662 @default.
- W2000435310 hasConceptScore W2000435310C15744967 @default.
- W2000435310 hasConceptScore W2000435310C2524010 @default.
- W2000435310 hasConceptScore W2000435310C26873012 @default.
- W2000435310 hasConceptScore W2000435310C2776029896 @default.
- W2000435310 hasConceptScore W2000435310C2780388253 @default.
- W2000435310 hasConceptScore W2000435310C33923547 @default.
- W2000435310 hasConceptScore W2000435310C37914503 @default.
- W2000435310 hasConceptScore W2000435310C41895202 @default.
- W2000435310 hasConceptScore W2000435310C5297727 @default.
- W2000435310 hasConceptScore W2000435310C77805123 @default.
- W2000435310 hasConceptScore W2000435310C99844830 @default.
- W2000435310 hasIssue "3" @default.
- W2000435310 hasLocation W20004353101 @default.
- W2000435310 hasOpenAccess W2000435310 @default.
- W2000435310 hasPrimaryLocation W20004353101 @default.
- W2000435310 hasRelatedWork W2026869403 @default.
- W2000435310 hasRelatedWork W2062396625 @default.
- W2000435310 hasRelatedWork W2069410808 @default.
- W2000435310 hasRelatedWork W2069605840 @default.
- W2000435310 hasRelatedWork W2085042185 @default.
- W2000435310 hasRelatedWork W2095526022 @default.
- W2000435310 hasRelatedWork W2186239004 @default.
- W2000435310 hasRelatedWork W2520966064 @default.
- W2000435310 hasRelatedWork W2988966500 @default.
- W2000435310 hasRelatedWork W3106168208 @default.
- W2000435310 hasVolume "59" @default.
- W2000435310 isParatext "false" @default.
- W2000435310 isRetracted "false" @default.
- W2000435310 magId "2000435310" @default.
- W2000435310 workType "article" @default.