Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000449909> ?p ?o ?g. }
- W2000449909 endingPage "1161" @default.
- W2000449909 startingPage "1143" @default.
- W2000449909 abstract "In this article, a new denoising algorithm is proposed based on the directionlet transform and the maximum a posteriori (MAP) estimation. The detailed directionlet coefficients of the logarithmically transformed noise-free image are considered to be Gaussian mixture probability density functions (PDFs) with zero means, and the speckle noise in the directionlet domain is modelled as additive noise with a Gaussian distribution. Then, we develop a Bayesian MAP estimator using these assumed prior distributions. Because the estimator that is the solution of the MAP equation is a function of the parameters of the assumed mixture PDF models, the expectation-maximization (EM) algorithm is also utilized to estimate the parameters, including weight factors and variances. Finally, the noise-free SAR image is restored from the estimated coefficients yielded by the MAP estimator. Experimental results show that the directionlet-based MAP method can be successfully applied to images and real synthetic aperture radar images to denoise speckle." @default.
- W2000449909 created "2016-06-24" @default.
- W2000449909 creator A5013039708 @default.
- W2000449909 creator A5069860925 @default.
- W2000449909 creator A5084379499 @default.
- W2000449909 date "2014-02-01" @default.
- W2000449909 modified "2023-10-16" @default.
- W2000449909 title "Directionlet-based method using the Gaussian mixture prior to SAR image despeckling" @default.
- W2000449909 cites W1970576638 @default.
- W2000449909 cites W1977309372 @default.
- W2000449909 cites W1981367467 @default.
- W2000449909 cites W1985020490 @default.
- W2000449909 cites W1992727591 @default.
- W2000449909 cites W1998339281 @default.
- W2000449909 cites W2009940911 @default.
- W2000449909 cites W2018332268 @default.
- W2000449909 cites W2020462652 @default.
- W2000449909 cites W2021026488 @default.
- W2000449909 cites W2033367330 @default.
- W2000449909 cites W2033903783 @default.
- W2000449909 cites W2049563145 @default.
- W2000449909 cites W2049909233 @default.
- W2000449909 cites W2055320629 @default.
- W2000449909 cites W2056370875 @default.
- W2000449909 cites W2074319623 @default.
- W2000449909 cites W2076063977 @default.
- W2000449909 cites W2096011446 @default.
- W2000449909 cites W2096433476 @default.
- W2000449909 cites W2097178422 @default.
- W2000449909 cites W2106219791 @default.
- W2000449909 cites W2106245346 @default.
- W2000449909 cites W2108179490 @default.
- W2000449909 cites W2111595891 @default.
- W2000449909 cites W2113945798 @default.
- W2000449909 cites W2116992238 @default.
- W2000449909 cites W2117294245 @default.
- W2000449909 cites W2122072454 @default.
- W2000449909 cites W2123806610 @default.
- W2000449909 cites W2125384310 @default.
- W2000449909 cites W2128989367 @default.
- W2000449909 cites W2129553449 @default.
- W2000449909 cites W2130219601 @default.
- W2000449909 cites W2132680427 @default.
- W2000449909 cites W2133665775 @default.
- W2000449909 cites W2133954466 @default.
- W2000449909 cites W2144318023 @default.
- W2000449909 cites W2146842127 @default.
- W2000449909 cites W2147176572 @default.
- W2000449909 cites W2151221869 @default.
- W2000449909 cites W2158347164 @default.
- W2000449909 cites W2158940042 @default.
- W2000449909 cites W2159509402 @default.
- W2000449909 cites W2161949954 @default.
- W2000449909 cites W2164809340 @default.
- W2000449909 cites W2169244200 @default.
- W2000449909 cites W4243529460 @default.
- W2000449909 doi "https://doi.org/10.1080/01431161.2013.875635" @default.
- W2000449909 hasPublicationYear "2014" @default.
- W2000449909 type Work @default.
- W2000449909 sameAs 2000449909 @default.
- W2000449909 citedByCount "9" @default.
- W2000449909 countsByYear W20004499092015 @default.
- W2000449909 countsByYear W20004499092016 @default.
- W2000449909 countsByYear W20004499092018 @default.
- W2000449909 countsByYear W20004499092019 @default.
- W2000449909 countsByYear W20004499092021 @default.
- W2000449909 countsByYear W20004499092022 @default.
- W2000449909 crossrefType "journal-article" @default.
- W2000449909 hasAuthorship W2000449909A5013039708 @default.
- W2000449909 hasAuthorship W2000449909A5069860925 @default.
- W2000449909 hasAuthorship W2000449909A5084379499 @default.
- W2000449909 hasConcept C102290492 @default.
- W2000449909 hasConcept C105795698 @default.
- W2000449909 hasConcept C11413529 @default.
- W2000449909 hasConcept C115961682 @default.
- W2000449909 hasConcept C121332964 @default.
- W2000449909 hasConcept C153180895 @default.
- W2000449909 hasConcept C154945302 @default.
- W2000449909 hasConcept C163716315 @default.
- W2000449909 hasConcept C180940675 @default.
- W2000449909 hasConcept C182081679 @default.
- W2000449909 hasConcept C185429906 @default.
- W2000449909 hasConcept C197055811 @default.
- W2000449909 hasConcept C33923547 @default.
- W2000449909 hasConcept C41008148 @default.
- W2000449909 hasConcept C4199805 @default.
- W2000449909 hasConcept C49781872 @default.
- W2000449909 hasConcept C61224824 @default.
- W2000449909 hasConcept C62520636 @default.
- W2000449909 hasConcept C87360688 @default.
- W2000449909 hasConcept C9810830 @default.
- W2000449909 hasConcept C99498987 @default.
- W2000449909 hasConceptScore W2000449909C102290492 @default.
- W2000449909 hasConceptScore W2000449909C105795698 @default.
- W2000449909 hasConceptScore W2000449909C11413529 @default.
- W2000449909 hasConceptScore W2000449909C115961682 @default.
- W2000449909 hasConceptScore W2000449909C121332964 @default.
- W2000449909 hasConceptScore W2000449909C153180895 @default.