Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000457498> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2000457498 endingPage "1550" @default.
- W2000457498 startingPage "1549" @default.
- W2000457498 abstract "The FHA domain is a phospho-peptide binding module involved in a wide range of cellular pathways, with a striking specificity for phospho-threonine over phospho-serine binding partners. Biochemical, structural, and dynamic simulations analysis allowed Pennell and colleagues to unravel the molecular basis of FHA domain phospho-threonine specificity. The FHA domain is a phospho-peptide binding module involved in a wide range of cellular pathways, with a striking specificity for phospho-threonine over phospho-serine binding partners. Biochemical, structural, and dynamic simulations analysis allowed Pennell and colleagues to unravel the molecular basis of FHA domain phospho-threonine specificity. Intracellular signaling processes that mediate key cellular events such as the cell cycle and the response to DNA damage critically rely on cascades of serine/threonine protein phosphorylation. Ser/Thr phosphorylation drives interactions between proteins through the recognition of the phosphorylated peptide by a number of distinct protein domains that exhibit an impressive degree of selectivity for the sequence of the peptide target (Yaffe and Smerdon, 2004Yaffe M.B. Smerdon S.J. Annu. Rev. Biophys. Biomol. Struct. 2004; 33: 225-244Crossref PubMed Scopus (69) Google Scholar). Perhaps one of the most intriguing aspects of phospho-peptide binding specificity is the ability of certain domains to distinguish between phospho-serine (pSer) and phospho-threonine (pThr) in the peptide. The most dramatic example is found in the family of FHA domains, which all exhibit a profound selectivity for pThr over pSer-containing phospho-peptides. In this issue of Structure, Pennell et al., 2010Pennell S. Westcott S. Ortiz-Lombardia M. Patel D. Li J. Nott T.J. Mohammed D. Buxton R.S. Yaffe M.B. Verma C. Smerdon S. Structure. 2010; 18 (this issue): 1587-1595Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar use a combination of crystallographic, biochemical, and computational approaches to provide a detailed structural mechanism for this selectivity, which is likely conserved throughout the FHA protein family. FHA, or forkhead-associated, domains, initially identified in the forkhead family of transcription factors, are found in both prokaryotic and eukaryotic organisms (Hofmann and Bucher, 1995Hofmann K. Bucher P. Trends Biochem. Sci. 1995; 20: 347-349Abstract Full Text PDF PubMed Scopus (278) Google Scholar). The role of the FHA as a phospho-peptide binding domain was first revealed in studies of the FHA domains of the S. cerevisiae DNA damage signaling kinase, Rad53p (Durocher et al., 1999Durocher D. Henckel J. Fersht A.R. Jackson S.P. Mol. Cell. 1999; 4: 387-394Abstract Full Text Full Text PDF PubMed Scopus (321) Google Scholar, Durocher et al., 2000Durocher D. Taylor I.A. Sarbassova D. Haire L.F. Westcott S.L. Jackson S.P. Smerdon S.J. Yaffe M.B. Mol. Cell. 2000; 6: 1169-1182Abstract Full Text Full Text PDF PubMed Scopus (337) Google Scholar). These studies revealed that both FHA domains within Rad53p could independently bind phospho-peptides with marked specificity for the identity of the side chain three residues C-terminal to the site of phosphorylation. Intriguingly, they also showed a dramatic preference for pThr over pSer peptides. While these binding specificities appear to be common in other members of the FHA family, certain unique preferences have also been observed (Liang and Van Doren, 2008Liang X. Van Doren S.R. Acc. Chem. Res. 2008; 41: 991-999Crossref PubMed Scopus (40) Google Scholar, Mahajan et al., 2008Mahajan A. Yuan C. Lee H. Chen E.S. Wu P.Y. Tsai M.D. Sci. Signal. 2008; 1: re12Crossref PubMed Scopus (96) Google Scholar). For example, a subfamily of the FHA domains, first identified within the DNA repair protein polynucleotide kinase, recognize highly acidic peptide targets, often containing multiple sites of phosphorylation (Ali et al., 2009Ali A.A. Jukes R.M. Pearl L.H. Oliver A.W. Nucleic Acids Res. 2009; 37: 1701-1712Crossref PubMed Scopus (57) Google Scholar). Structural studies on FHA domains have revealed a common architecture consisting of an 11-stranded β sandwich. The phosphorylated peptide binds three different loops that protrude from one end of the β sandwich (β4-β5, β6-β7, and β10-β11) (Figure 1A ). The only two conserved residues of these loops, an Arg and a Ser, provide two of the ligands for the phosphate group, while additional ligands are provided by other less well-conserved residues (Figure 1B). In addition, a second shallow pocket serves to provide binding specificity for the amino acid at the +3 position with respect to the pThr. In this issue, Pennell et al., 2010Pennell S. Westcott S. Ortiz-Lombardia M. Patel D. Li J. Nott T.J. Mohammed D. Buxton R.S. Yaffe M.B. Verma C. Smerdon S. Structure. 2010; 18 (this issue): 1587-1595Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar probe the basis for pThr-dependent FHA interactions through the study of the FHA domain of Mycobacterium tuberculosis Rv0020c. They use oriented peptide library screening to select peptides that bind this previously uncharacterized domain with high affinity, revealing a significant preference for pThr peptides containing a small/medium hydrophobic residue at the pThr +3 position. The thermodynamic contributions of specific residues to binding energetics were probed by isothermal titration calorimetric peptide-binding measurements of an extensive set of peptide and FHA mutants. These experiments further support the importance of the pThr +3 residue and reveal an energetic coupling of the peptide +3 residue with the pThr −1 residue. They went on to determine the structure of the Rv0020c FHA domain, both free and in complex with an optimal phopho-peptide target. Building on this high resolution structural data, they used molecular dynamics simulations to specifically address the mechanism of selective recognition of pThr- versus pSer-containing peptides. The simulations indicate that while binding of either the pThr or pSer peptide induces a significant stabilization of the FHA, the effect is much more pronounced for the pThr peptide. The pThr-dependent stabilization relies upon limited contacts between the pThr γ-methyl group and a small pocket on the FHA composed of residues including a highly conserved asparagine residue (Asn495 in Rv0020c), which makes critical contacts to the phospho-peptide backbone bridging the +1 and +3 residues. Loss of this contact in the complex with the pSer peptide results in a higher degree of overall flexibility, in particular in the regions directly in contact with the pSer as well as Asn495. Taken together, this work presents a satisfying explanation for how the loss of a small van der Waals contact surface can trigger the destabilization of the entire FHA-peptide interface, a mechanism that is likely conserved throughout the FHA protein family. We are beginning to understand the detailed mechanisms of phospho-peptide binding specificity for many of the critical protein modules that regulate intracellular signaling pathways. While additional details remain to be ironed out—for example, how certain BRCT domains selectively bind pSer- over pThr-peptides (Manke et al., 2003Manke I.A. Lowery D.M. Nguyen A. Yaffe M.B. Science. 2003; 302: 636-639Crossref PubMed Scopus (520) Google Scholar)—ultimately we will need to understand the impact of these interactions on the intact protein complexes that regulate phosphorylation-dependent signaling. Structural and Functional Analysis of Phosphothreonine-Dependent FHA Domain InteractionsPennell et al.StructureDecember 08, 2010In BriefFHA domains are well established as phospho-dependent binding modules mediating signal transduction in Ser/Thr kinase signaling networks in both eukaryotic and prokaryotic species. Although they are unique in binding exclusively to phosphothreonine, the basis for this discrimination over phosphoserine has remained elusive. Here, we attempt to dissect overall binding specificity at the molecular level. We first determined the optimal peptide sequence for Rv0020c FHA domain binding by oriented peptide library screening. Full-Text PDF Open Archive" @default.
- W2000457498 created "2016-06-24" @default.
- W2000457498 creator A5010808086 @default.
- W2000457498 creator A5058771826 @default.
- W2000457498 date "2010-12-01" @default.
- W2000457498 modified "2023-09-27" @default.
- W2000457498 title "FHA Domain pThr Binding Specificity: It's All about Me" @default.
- W2000457498 cites W1971040573 @default.
- W2000457498 cites W2010255232 @default.
- W2000457498 cites W2013650805 @default.
- W2000457498 cites W2038260399 @default.
- W2000457498 cites W2060107244 @default.
- W2000457498 cites W2075008928 @default.
- W2000457498 cites W2104293639 @default.
- W2000457498 cites W2129510187 @default.
- W2000457498 cites W2131036059 @default.
- W2000457498 doi "https://doi.org/10.1016/j.str.2010.11.005" @default.
- W2000457498 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3881964" @default.
- W2000457498 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21134632" @default.
- W2000457498 hasPublicationYear "2010" @default.
- W2000457498 type Work @default.
- W2000457498 sameAs 2000457498 @default.
- W2000457498 citedByCount "8" @default.
- W2000457498 countsByYear W20004574982015 @default.
- W2000457498 countsByYear W20004574982017 @default.
- W2000457498 countsByYear W20004574982019 @default.
- W2000457498 countsByYear W20004574982021 @default.
- W2000457498 countsByYear W20004574982022 @default.
- W2000457498 crossrefType "journal-article" @default.
- W2000457498 hasAuthorship W2000457498A5010808086 @default.
- W2000457498 hasAuthorship W2000457498A5058771826 @default.
- W2000457498 hasBestOaLocation W20004574981 @default.
- W2000457498 hasConcept C134306372 @default.
- W2000457498 hasConcept C185592680 @default.
- W2000457498 hasConcept C33923547 @default.
- W2000457498 hasConcept C36503486 @default.
- W2000457498 hasConcept C51639874 @default.
- W2000457498 hasConcept C54355233 @default.
- W2000457498 hasConcept C70721500 @default.
- W2000457498 hasConcept C86803240 @default.
- W2000457498 hasConcept C95444343 @default.
- W2000457498 hasConceptScore W2000457498C134306372 @default.
- W2000457498 hasConceptScore W2000457498C185592680 @default.
- W2000457498 hasConceptScore W2000457498C33923547 @default.
- W2000457498 hasConceptScore W2000457498C36503486 @default.
- W2000457498 hasConceptScore W2000457498C51639874 @default.
- W2000457498 hasConceptScore W2000457498C54355233 @default.
- W2000457498 hasConceptScore W2000457498C70721500 @default.
- W2000457498 hasConceptScore W2000457498C86803240 @default.
- W2000457498 hasConceptScore W2000457498C95444343 @default.
- W2000457498 hasIssue "12" @default.
- W2000457498 hasLocation W20004574981 @default.
- W2000457498 hasLocation W20004574982 @default.
- W2000457498 hasLocation W20004574983 @default.
- W2000457498 hasLocation W20004574984 @default.
- W2000457498 hasOpenAccess W2000457498 @default.
- W2000457498 hasPrimaryLocation W20004574981 @default.
- W2000457498 hasRelatedWork W1571895549 @default.
- W2000457498 hasRelatedWork W1920751942 @default.
- W2000457498 hasRelatedWork W1991523530 @default.
- W2000457498 hasRelatedWork W2002128513 @default.
- W2000457498 hasRelatedWork W2020824267 @default.
- W2000457498 hasRelatedWork W2031436818 @default.
- W2000457498 hasRelatedWork W2057739827 @default.
- W2000457498 hasRelatedWork W2075354549 @default.
- W2000457498 hasRelatedWork W2095425688 @default.
- W2000457498 hasRelatedWork W2092874662 @default.
- W2000457498 hasVolume "18" @default.
- W2000457498 isParatext "false" @default.
- W2000457498 isRetracted "false" @default.
- W2000457498 magId "2000457498" @default.
- W2000457498 workType "article" @default.