Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000462146> ?p ?o ?g. }
- W2000462146 endingPage "1419" @default.
- W2000462146 startingPage "1388" @default.
- W2000462146 abstract "In this paper we study an algorithm for solving a minimization problem composed of a differentiable (possibly nonconvex) and a convex (possibly nondifferentiable) function. The algorithm iPiano combines forward-backward splitting with an inertial force. It can be seen as a nonsmooth split version of the Heavy-ball method from Polyak. A rigorous analysis of the algorithm for the proposed class of problems yields global convergence of the function values and the arguments. This makes the algorithm robust for usage on nonconvex problems. The convergence result is obtained based on the Kurdyka--Łojasiewicz inequality. This is a very weak restriction, which was used to prove convergence for several other gradient methods. First, an abstract convergence theorem for a generic algorithm is proved, and then iPiano is shown to satisfy the requirements of this theorem. Furthermore, a convergence rate is established for the general problem class. We demonstrate iPiano on computer vision problems---image denoising with learned priors and diffusion based image compression." @default.
- W2000462146 created "2016-06-24" @default.
- W2000462146 creator A5032205387 @default.
- W2000462146 creator A5070290355 @default.
- W2000462146 creator A5077938164 @default.
- W2000462146 creator A5082194697 @default.
- W2000462146 date "2014-01-01" @default.
- W2000462146 modified "2023-10-14" @default.
- W2000462146 title "iPiano: Inertial Proximal Algorithm for Nonconvex Optimization" @default.
- W2000462146 cites W1524647815 @default.
- W2000462146 cites W1967138577 @default.
- W2000462146 cites W1979896658 @default.
- W2000462146 cites W1988720110 @default.
- W2000462146 cites W1989464734 @default.
- W2000462146 cites W199410564 @default.
- W2000462146 cites W2006262045 @default.
- W2000462146 cites W2013243898 @default.
- W2000462146 cites W2013918710 @default.
- W2000462146 cites W2019569173 @default.
- W2000462146 cites W2020999234 @default.
- W2000462146 cites W2021548137 @default.
- W2000462146 cites W2022541060 @default.
- W2000462146 cites W2030161963 @default.
- W2000462146 cites W2038497950 @default.
- W2000462146 cites W2040006905 @default.
- W2000462146 cites W2048742402 @default.
- W2000462146 cites W2051434435 @default.
- W2000462146 cites W2058532290 @default.
- W2000462146 cites W2062184313 @default.
- W2000462146 cites W2068357778 @default.
- W2000462146 cites W2078853581 @default.
- W2000462146 cites W2088616581 @default.
- W2000462146 cites W2092663520 @default.
- W2000462146 cites W2100556411 @default.
- W2000462146 cites W2126621530 @default.
- W2000462146 cites W2129732816 @default.
- W2000462146 cites W2130184048 @default.
- W2000462146 cites W2152132615 @default.
- W2000462146 cites W2331639718 @default.
- W2000462146 doi "https://doi.org/10.1137/130942954" @default.
- W2000462146 hasPublicationYear "2014" @default.
- W2000462146 type Work @default.
- W2000462146 sameAs 2000462146 @default.
- W2000462146 citedByCount "351" @default.
- W2000462146 countsByYear W20004621462014 @default.
- W2000462146 countsByYear W20004621462015 @default.
- W2000462146 countsByYear W20004621462016 @default.
- W2000462146 countsByYear W20004621462017 @default.
- W2000462146 countsByYear W20004621462018 @default.
- W2000462146 countsByYear W20004621462019 @default.
- W2000462146 countsByYear W20004621462020 @default.
- W2000462146 countsByYear W20004621462021 @default.
- W2000462146 countsByYear W20004621462022 @default.
- W2000462146 countsByYear W20004621462023 @default.
- W2000462146 crossrefType "journal-article" @default.
- W2000462146 hasAuthorship W2000462146A5032205387 @default.
- W2000462146 hasAuthorship W2000462146A5070290355 @default.
- W2000462146 hasAuthorship W2000462146A5077938164 @default.
- W2000462146 hasAuthorship W2000462146A5082194697 @default.
- W2000462146 hasBestOaLocation W20004621462 @default.
- W2000462146 hasConcept C112680207 @default.
- W2000462146 hasConcept C11413529 @default.
- W2000462146 hasConcept C115961682 @default.
- W2000462146 hasConcept C122041747 @default.
- W2000462146 hasConcept C126255220 @default.
- W2000462146 hasConcept C127162648 @default.
- W2000462146 hasConcept C134306372 @default.
- W2000462146 hasConcept C14036430 @default.
- W2000462146 hasConcept C145446738 @default.
- W2000462146 hasConcept C154945302 @default.
- W2000462146 hasConcept C161999928 @default.
- W2000462146 hasConcept C162324750 @default.
- W2000462146 hasConcept C202615002 @default.
- W2000462146 hasConcept C2524010 @default.
- W2000462146 hasConcept C2777303404 @default.
- W2000462146 hasConcept C28826006 @default.
- W2000462146 hasConcept C31258907 @default.
- W2000462146 hasConcept C33923547 @default.
- W2000462146 hasConcept C41008148 @default.
- W2000462146 hasConcept C50522688 @default.
- W2000462146 hasConcept C57869625 @default.
- W2000462146 hasConcept C78458016 @default.
- W2000462146 hasConcept C86803240 @default.
- W2000462146 hasConceptScore W2000462146C112680207 @default.
- W2000462146 hasConceptScore W2000462146C11413529 @default.
- W2000462146 hasConceptScore W2000462146C115961682 @default.
- W2000462146 hasConceptScore W2000462146C122041747 @default.
- W2000462146 hasConceptScore W2000462146C126255220 @default.
- W2000462146 hasConceptScore W2000462146C127162648 @default.
- W2000462146 hasConceptScore W2000462146C134306372 @default.
- W2000462146 hasConceptScore W2000462146C14036430 @default.
- W2000462146 hasConceptScore W2000462146C145446738 @default.
- W2000462146 hasConceptScore W2000462146C154945302 @default.
- W2000462146 hasConceptScore W2000462146C161999928 @default.
- W2000462146 hasConceptScore W2000462146C162324750 @default.
- W2000462146 hasConceptScore W2000462146C202615002 @default.
- W2000462146 hasConceptScore W2000462146C2524010 @default.
- W2000462146 hasConceptScore W2000462146C2777303404 @default.