Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000485084> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2000485084 abstract "In 2009, the transportation sector was the second largest consumer of primary energy in the United States, following the electric power sector and followed by the industrial, residential, and commercial sectors. The pattern of energy use varies by sector. For example, petroleum provides 96% of the energy used for transportation but its share is much less in other sectors. While the United States consumes vast quantities of energy, it has also pledged to cut its greenhouse gas emissions by 2050. In order to assist in planning for future energy needs, the purpose of this study is to develop a model for transport energy demand that incorporates past trends. This paper describes the development of two types of transportation energy models which are able to predict the United States’ future transportation energy-demand. One model uses an artificial neural network technique (a feed-forward multilayer perceptron neural network coupled with back-propagation technique), and the other model uses a multiple linear regression technique. Various independent variables (including GDP, population, oil price, and number of vehicles) are tested. The future transport energy demand can then be forecast based on the application of the growth rate of effective parameters on the models. The future trends of independent variables have been predicted based on the historical data from 1980 using a regression method. Using the forecast of independent variables, the energy demand has been forecasted for period of 2010 to 2030. In terms of the forecasts generated, the models show two different trends despite their performances being at the same level during the model-test period. Although, the results from the regression models show a uniform increase with different slopes corresponding to different models for energy demand in the near future, the results from ANN express no significant change in demand in same time frame. Increased sensitivity of the ANN models to the recent fluctuations caused by the economic recession may be the reason for the differences with the regression models which predict based on the total long-term trends. Although a small increase in the energy demand in the transportation sector of the United States has been predicted by the models, additional factors need to be considered regarding future energy policy. For example, the United States may choose to reduce energy consumption in order to reduce CO2 emissions and meet its national and international commitments, or large increases in fuel efficiency may reduce petroleum demand." @default.
- W2000485084 created "2016-06-24" @default.
- W2000485084 creator A5019030065 @default.
- W2000485084 creator A5086535123 @default.
- W2000485084 date "2014-06-30" @default.
- W2000485084 modified "2023-09-27" @default.
- W2000485084 title "Transport Energy Demand Modeling of the United States Using Artificial Neural Networks and Multiple Linear Regressions" @default.
- W2000485084 doi "https://doi.org/10.1115/es2014-6447" @default.
- W2000485084 hasPublicationYear "2014" @default.
- W2000485084 type Work @default.
- W2000485084 sameAs 2000485084 @default.
- W2000485084 citedByCount "1" @default.
- W2000485084 countsByYear W20004850842014 @default.
- W2000485084 crossrefType "proceedings-article" @default.
- W2000485084 hasAuthorship W2000485084A5019030065 @default.
- W2000485084 hasAuthorship W2000485084A5086535123 @default.
- W2000485084 hasConcept C105795698 @default.
- W2000485084 hasConcept C119599485 @default.
- W2000485084 hasConcept C119857082 @default.
- W2000485084 hasConcept C127413603 @default.
- W2000485084 hasConcept C144024400 @default.
- W2000485084 hasConcept C149782125 @default.
- W2000485084 hasConcept C149923435 @default.
- W2000485084 hasConcept C152877465 @default.
- W2000485084 hasConcept C154945302 @default.
- W2000485084 hasConcept C162324750 @default.
- W2000485084 hasConcept C179717631 @default.
- W2000485084 hasConcept C186370098 @default.
- W2000485084 hasConcept C2780165032 @default.
- W2000485084 hasConcept C2908647359 @default.
- W2000485084 hasConcept C33923547 @default.
- W2000485084 hasConcept C41008148 @default.
- W2000485084 hasConcept C48921125 @default.
- W2000485084 hasConcept C50644808 @default.
- W2000485084 hasConceptScore W2000485084C105795698 @default.
- W2000485084 hasConceptScore W2000485084C119599485 @default.
- W2000485084 hasConceptScore W2000485084C119857082 @default.
- W2000485084 hasConceptScore W2000485084C127413603 @default.
- W2000485084 hasConceptScore W2000485084C144024400 @default.
- W2000485084 hasConceptScore W2000485084C149782125 @default.
- W2000485084 hasConceptScore W2000485084C149923435 @default.
- W2000485084 hasConceptScore W2000485084C152877465 @default.
- W2000485084 hasConceptScore W2000485084C154945302 @default.
- W2000485084 hasConceptScore W2000485084C162324750 @default.
- W2000485084 hasConceptScore W2000485084C179717631 @default.
- W2000485084 hasConceptScore W2000485084C186370098 @default.
- W2000485084 hasConceptScore W2000485084C2780165032 @default.
- W2000485084 hasConceptScore W2000485084C2908647359 @default.
- W2000485084 hasConceptScore W2000485084C33923547 @default.
- W2000485084 hasConceptScore W2000485084C41008148 @default.
- W2000485084 hasConceptScore W2000485084C48921125 @default.
- W2000485084 hasConceptScore W2000485084C50644808 @default.
- W2000485084 hasLocation W20004850841 @default.
- W2000485084 hasOpenAccess W2000485084 @default.
- W2000485084 hasPrimaryLocation W20004850841 @default.
- W2000485084 hasRelatedWork W1985758196 @default.
- W2000485084 hasRelatedWork W2186980807 @default.
- W2000485084 hasRelatedWork W2331701639 @default.
- W2000485084 hasRelatedWork W2352101619 @default.
- W2000485084 hasRelatedWork W2369547777 @default.
- W2000485084 hasRelatedWork W2387881743 @default.
- W2000485084 hasRelatedWork W2797282764 @default.
- W2000485084 hasRelatedWork W2943894916 @default.
- W2000485084 hasRelatedWork W3192869398 @default.
- W2000485084 hasRelatedWork W4363647291 @default.
- W2000485084 isParatext "false" @default.
- W2000485084 isRetracted "false" @default.
- W2000485084 magId "2000485084" @default.
- W2000485084 workType "article" @default.