Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000485871> ?p ?o ?g. }
- W2000485871 endingPage "135" @default.
- W2000485871 startingPage "124" @default.
- W2000485871 abstract "In order to conquer the spurious reflections from the truncated edges and maintain the stability in the long-time simulation of elastic wave propagation, several perfectly matched layer (PML) methods have been proposed in the first-order (e.g., velocity–stress equations) and the second-order (e.g., energy equation with displacement unknown only) formulations. The multiaxial perfectly matched layer (M-PML) holds the excellent stability for the long-time simulation of wave propagation, even though it is not perfectly matched in the discretized M-PML equation system. This absorbing boundary approach can offer an alternative way to solve the problem of the late-time instability, especially for anisotropic media, which is also suffered by the convolutional perfectly matched layer (C-PML) that is supposed to be competent to handle most stable problems. The M-PML termination implementation in the first-order formulations is well proposed. The common drawback of the implementation of the first-order M-PML formulations is that it necessitates fundamental reconstruction of the existing codes of the second-order spectral element method (SEM) or finite element method (FEM). Therefore, we propose a nonconvolutional second-order M-PML absorbing boundary condition approach for the wave propagation simulation in elastic media that has not yet been developed before. Two-dimensional numerical simulation validations demonstrate that the proposed second-order M-PML has good performances: 1) superior efficiency and stability of absorbing the spurious elastic wavefields, both the surface waves and body waves, reflected on the boundaries; 2) superior stability in the long-time simulation even in the isotropic medium with a high Poisson's ratio; 3) superior efficiency and stability in the long-time simulation for anisotropic media. This method hence makes the SEM and FEM in the second-order wave equation formulation more efficient and stable for the long-time simulation." @default.
- W2000485871 created "2016-06-24" @default.
- W2000485871 creator A5011208510 @default.
- W2000485871 creator A5073966541 @default.
- W2000485871 creator A5080674987 @default.
- W2000485871 date "2014-02-01" @default.
- W2000485871 modified "2023-10-16" @default.
- W2000485871 title "A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations" @default.
- W2000485871 cites W1964895327 @default.
- W2000485871 cites W1967652956 @default.
- W2000485871 cites W1975139914 @default.
- W2000485871 cites W1986706061 @default.
- W2000485871 cites W1988028777 @default.
- W2000485871 cites W1988116931 @default.
- W2000485871 cites W1997271111 @default.
- W2000485871 cites W2001819970 @default.
- W2000485871 cites W2003017040 @default.
- W2000485871 cites W2005835793 @default.
- W2000485871 cites W2008720207 @default.
- W2000485871 cites W2012029480 @default.
- W2000485871 cites W2015906912 @default.
- W2000485871 cites W2018048720 @default.
- W2000485871 cites W2019840928 @default.
- W2000485871 cites W2023871291 @default.
- W2000485871 cites W2028402538 @default.
- W2000485871 cites W2034097561 @default.
- W2000485871 cites W2057557906 @default.
- W2000485871 cites W2060093817 @default.
- W2000485871 cites W2062870772 @default.
- W2000485871 cites W2064660626 @default.
- W2000485871 cites W2074320187 @default.
- W2000485871 cites W2075289299 @default.
- W2000485871 cites W2080165405 @default.
- W2000485871 cites W2097664123 @default.
- W2000485871 cites W2101194514 @default.
- W2000485871 cites W2104498626 @default.
- W2000485871 cites W2109206815 @default.
- W2000485871 cites W2118069284 @default.
- W2000485871 cites W2122507738 @default.
- W2000485871 cites W2123930157 @default.
- W2000485871 cites W2130788262 @default.
- W2000485871 cites W2135522010 @default.
- W2000485871 cites W2138531082 @default.
- W2000485871 cites W2140920265 @default.
- W2000485871 cites W2151465427 @default.
- W2000485871 cites W2151901634 @default.
- W2000485871 cites W2153573562 @default.
- W2000485871 cites W2164405805 @default.
- W2000485871 cites W2166303440 @default.
- W2000485871 cites W2405130551 @default.
- W2000485871 cites W2473991089 @default.
- W2000485871 cites W2964255313 @default.
- W2000485871 cites W3202528256 @default.
- W2000485871 cites W4240464597 @default.
- W2000485871 cites W4376595756 @default.
- W2000485871 doi "https://doi.org/10.1016/j.jappgeo.2013.12.006" @default.
- W2000485871 hasPublicationYear "2014" @default.
- W2000485871 type Work @default.
- W2000485871 sameAs 2000485871 @default.
- W2000485871 citedByCount "28" @default.
- W2000485871 countsByYear W20004858712014 @default.
- W2000485871 countsByYear W20004858712015 @default.
- W2000485871 countsByYear W20004858712016 @default.
- W2000485871 countsByYear W20004858712018 @default.
- W2000485871 countsByYear W20004858712019 @default.
- W2000485871 countsByYear W20004858712020 @default.
- W2000485871 countsByYear W20004858712021 @default.
- W2000485871 countsByYear W20004858712022 @default.
- W2000485871 countsByYear W20004858712023 @default.
- W2000485871 crossrefType "journal-article" @default.
- W2000485871 hasAuthorship W2000485871A5011208510 @default.
- W2000485871 hasAuthorship W2000485871A5073966541 @default.
- W2000485871 hasAuthorship W2000485871A5080674987 @default.
- W2000485871 hasConcept C105795698 @default.
- W2000485871 hasConcept C112972136 @default.
- W2000485871 hasConcept C119857082 @default.
- W2000485871 hasConcept C120665830 @default.
- W2000485871 hasConcept C121332964 @default.
- W2000485871 hasConcept C134306372 @default.
- W2000485871 hasConcept C135628077 @default.
- W2000485871 hasConcept C16895185 @default.
- W2000485871 hasConcept C182310444 @default.
- W2000485871 hasConcept C33923547 @default.
- W2000485871 hasConcept C41008148 @default.
- W2000485871 hasConcept C44886760 @default.
- W2000485871 hasConcept C59696629 @default.
- W2000485871 hasConcept C73000952 @default.
- W2000485871 hasConcept C97256817 @default.
- W2000485871 hasConcept C97355855 @default.
- W2000485871 hasConceptScore W2000485871C105795698 @default.
- W2000485871 hasConceptScore W2000485871C112972136 @default.
- W2000485871 hasConceptScore W2000485871C119857082 @default.
- W2000485871 hasConceptScore W2000485871C120665830 @default.
- W2000485871 hasConceptScore W2000485871C121332964 @default.
- W2000485871 hasConceptScore W2000485871C134306372 @default.
- W2000485871 hasConceptScore W2000485871C135628077 @default.
- W2000485871 hasConceptScore W2000485871C16895185 @default.
- W2000485871 hasConceptScore W2000485871C182310444 @default.