Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000490369> ?p ?o ?g. }
- W2000490369 endingPage "356" @default.
- W2000490369 startingPage "348" @default.
- W2000490369 abstract "In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1Catania S. Allshire R.C. Anarchic centromeres: deciphering order from apparent chaos.Curr. Opin. Cell Biol. 2014; 26: 41-50Crossref PubMed Scopus (20) Google Scholar, 2Müller S. Almouzni G. A network of players in H3 histone variant deposition and maintenance at centromeres.Biochim. Biophys. Acta. 2014; 1839: 241-250Crossref PubMed Scopus (44) Google Scholar, 3Fukagawa T. Earnshaw W.C. The centromere: chromatin foundation for the kinetochore machinery.Dev. Cell. 2014; 30: 496-508Abstract Full Text Full Text PDF PubMed Scopus (279) Google Scholar]. CENP-A-containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4Verdaasdonk J.S. Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation.Nat. Rev. Mol. Cell Biol. 2011; 12: 320-332Crossref PubMed Scopus (149) Google Scholar, 5Perpelescu M. Fukagawa T. The ABCs of CENPs.Chromosoma. 2011; 120: 425-446Crossref PubMed Scopus (149) Google Scholar, 6Cheeseman I.M. Desai A. Molecular architecture of the kinetochore-microtubule interface.Nat. Rev. Mol. Cell Biol. 2008; 9: 33-46Crossref PubMed Scopus (689) Google Scholar]. Whereas the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7Sullivan K.F. Hechenberger M. Masri K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere.J. Cell Biol. 1994; 127: 581-592Crossref PubMed Scopus (363) Google Scholar, 8Chen Y. Baker R.E. Keith K.C. Harris K. Stoler S. Fitzgerald-Hayes M. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain.Mol. Cell. Biol. 2000; 20: 7037-7048Crossref PubMed Scopus (122) Google Scholar, 9Takayama Y. Sato H. Saitoh S. Ogiyama Y. Masuda F. Takahashi K. Biphasic incorporation of centromeric histone CENP-A in fission yeast.Mol. Biol. Cell. 2008; 19: 682-690Crossref PubMed Scopus (82) Google Scholar, 10Ravi M. Chan S.W. Haploid plants produced by centromere-mediated genome elimination.Nature. 2010; 464: 615-618Crossref PubMed Scopus (361) Google Scholar, 11Fachinetti D. Folco H.D. Nechemia-Arbely Y. Valente L.P. Nguyen K. Wong A.J. Zhu Q. Holland A.J. Desai A. Jansen L.E. Cleveland D.W. A two-step mechanism for epigenetic specification of centromere identity and function.Nat. Cell Biol. 2013; 15: 1056-1066Crossref PubMed Scopus (182) Google Scholar, 12Torras-Llort M. Medina-Giró S. Moreno-Moreno O. Azorín F. A conserved arginine-rich motif within the hypervariable N-domain of Drosophila centromeric histone H3 (CenH3) mediates BubR1 recruitment.PLoS ONE. 2010; 5: e13747Crossref PubMed Scopus (9) Google Scholar]. Here, we employ the well-studied fission yeast centromere [13Pidoux A.L. Allshire R.C. Kinetochore and heterochromatin domains of the fission yeast centromere.Chromosome Res. 2004; 12: 521-534Crossref PubMed Scopus (99) Google Scholar, 14Folco H.D. Pidoux A.L. Urano T. Allshire R.C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres.Science. 2008; 319: 94-97Crossref PubMed Scopus (227) Google Scholar, 15Ishii K. Conservation and divergence of centromere specification in yeast.Curr. Opin. Microbiol. 2009; 12: 616-622Crossref PubMed Scopus (12) Google Scholar, 16Yamagishi Y. Sakuno T. Goto Y. Watanabe Y. Kinetochore composition and its function: lessons from yeasts.FEMS Microbiol. Rev. 2014; 38: 185-200Crossref PubMed Scopus (30) Google Scholar] to investigate the function of the CENP-A (Cnp1) N-tail. We show that alteration of the N-tail does not affect Cnp1 loading at centromeres, outer kinetochore formation, or spindle checkpoint signaling but nevertheless elevates chromosome loss. N-tail mutants exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of the CCAN." @default.
- W2000490369 created "2016-06-24" @default.
- W2000490369 creator A5015072059 @default.
- W2000490369 creator A5020713009 @default.
- W2000490369 creator A5030458091 @default.
- W2000490369 creator A5036268839 @default.
- W2000490369 creator A5060356943 @default.
- W2000490369 creator A5060382413 @default.
- W2000490369 creator A5080357749 @default.
- W2000490369 creator A5086498009 @default.
- W2000490369 date "2015-02-01" @default.
- W2000490369 modified "2023-10-16" @default.
- W2000490369 title "The CENP-A N-Tail Confers Epigenetic Stability to Centromeres via the CENP-T Branch of the CCAN in Fission Yeast" @default.
- W2000490369 cites W1970569685 @default.
- W2000490369 cites W1970597357 @default.
- W2000490369 cites W1976332162 @default.
- W2000490369 cites W1980166711 @default.
- W2000490369 cites W2005019868 @default.
- W2000490369 cites W2005654623 @default.
- W2000490369 cites W2012883453 @default.
- W2000490369 cites W2013939194 @default.
- W2000490369 cites W2014270114 @default.
- W2000490369 cites W2017165841 @default.
- W2000490369 cites W2017914102 @default.
- W2000490369 cites W2020044808 @default.
- W2000490369 cites W2021744870 @default.
- W2000490369 cites W2034482404 @default.
- W2000490369 cites W2042464607 @default.
- W2000490369 cites W2042812035 @default.
- W2000490369 cites W2042967115 @default.
- W2000490369 cites W2048938594 @default.
- W2000490369 cites W2059369082 @default.
- W2000490369 cites W2068986932 @default.
- W2000490369 cites W2070122527 @default.
- W2000490369 cites W2075763595 @default.
- W2000490369 cites W2075909204 @default.
- W2000490369 cites W2081007008 @default.
- W2000490369 cites W2088164618 @default.
- W2000490369 cites W2089456325 @default.
- W2000490369 cites W2091470727 @default.
- W2000490369 cites W2091476382 @default.
- W2000490369 cites W2115031550 @default.
- W2000490369 cites W2122956708 @default.
- W2000490369 cites W2128403571 @default.
- W2000490369 cites W2138830547 @default.
- W2000490369 cites W2139238510 @default.
- W2000490369 cites W2145579024 @default.
- W2000490369 cites W2147290892 @default.
- W2000490369 cites W2155235554 @default.
- W2000490369 cites W2161938609 @default.
- W2000490369 cites W2168875435 @default.
- W2000490369 doi "https://doi.org/10.1016/j.cub.2014.11.060" @default.
- W2000490369 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4318777" @default.
- W2000490369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25619765" @default.
- W2000490369 hasPublicationYear "2015" @default.
- W2000490369 type Work @default.
- W2000490369 sameAs 2000490369 @default.
- W2000490369 citedByCount "44" @default.
- W2000490369 countsByYear W20004903692015 @default.
- W2000490369 countsByYear W20004903692016 @default.
- W2000490369 countsByYear W20004903692017 @default.
- W2000490369 countsByYear W20004903692018 @default.
- W2000490369 countsByYear W20004903692019 @default.
- W2000490369 countsByYear W20004903692020 @default.
- W2000490369 countsByYear W20004903692021 @default.
- W2000490369 countsByYear W20004903692022 @default.
- W2000490369 countsByYear W20004903692023 @default.
- W2000490369 crossrefType "journal-article" @default.
- W2000490369 hasAuthorship W2000490369A5015072059 @default.
- W2000490369 hasAuthorship W2000490369A5020713009 @default.
- W2000490369 hasAuthorship W2000490369A5030458091 @default.
- W2000490369 hasAuthorship W2000490369A5036268839 @default.
- W2000490369 hasAuthorship W2000490369A5060356943 @default.
- W2000490369 hasAuthorship W2000490369A5060382413 @default.
- W2000490369 hasAuthorship W2000490369A5080357749 @default.
- W2000490369 hasAuthorship W2000490369A5086498009 @default.
- W2000490369 hasBestOaLocation W20004903691 @default.
- W2000490369 hasConcept C104317684 @default.
- W2000490369 hasConcept C192838845 @default.
- W2000490369 hasConcept C2776745794 @default.
- W2000490369 hasConcept C2781364455 @default.
- W2000490369 hasConcept C30481170 @default.
- W2000490369 hasConcept C54355233 @default.
- W2000490369 hasConcept C552990157 @default.
- W2000490369 hasConcept C63491729 @default.
- W2000490369 hasConcept C64927066 @default.
- W2000490369 hasConcept C83640560 @default.
- W2000490369 hasConcept C86803240 @default.
- W2000490369 hasConcept C95444343 @default.
- W2000490369 hasConceptScore W2000490369C104317684 @default.
- W2000490369 hasConceptScore W2000490369C192838845 @default.
- W2000490369 hasConceptScore W2000490369C2776745794 @default.
- W2000490369 hasConceptScore W2000490369C2781364455 @default.
- W2000490369 hasConceptScore W2000490369C30481170 @default.
- W2000490369 hasConceptScore W2000490369C54355233 @default.
- W2000490369 hasConceptScore W2000490369C552990157 @default.
- W2000490369 hasConceptScore W2000490369C63491729 @default.
- W2000490369 hasConceptScore W2000490369C64927066 @default.