Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000503364> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2000503364 endingPage "754" @default.
- W2000503364 startingPage "740" @default.
- W2000503364 abstract "Automotive driving under unacceptable levels of accumulated stress deteriorates their vehicle control and risk-assessment capabilities often inviting road accidents. Design of a safety-critical wearable driver assist system for continuous stress level monitoring requires development of an intelligent algorithm capable of recognizing the drivers’ affective state and cumulatively account for increasing stress level. Task induced modifications in rhythms of physiological signals acquired during a real-time driving are clinically proven hallmarks for quantitative analysis of stress and mental fatigue. The present work proposes a neural network driven based solution to learning driving-induced stress patterns and correlating it with statistical, structural and time-frequency changes observed in the recorded biosignals. Physiological signals like Galvanic Skin Response (GSR) and Photoplethysmography (PPG) were selected for the present work. A comprehensive performance analysis on the selected neural network configurations (both Feed forward and Recurrent) concluded that Layer Recurrent Neural Networks are most optimal for stress level detection. This evaluation achieved an average precision of 89.23%, sensitivity of 88.83% and specificity of 94.92% when tested over 19 automotive drivers. The biofeedback inferred about the driver's ongoing physiological state using this neural network based inference engine would provide crucial information to on-board safety embedded systems to activate accordingly. It is envisaged that such a driver-centric safety system will help save precious lives by way of providing fast and credible real-time alerts to drivers and their coupled cars." @default.
- W2000503364 created "2016-06-24" @default.
- W2000503364 creator A5043230577 @default.
- W2000503364 creator A5056241875 @default.
- W2000503364 creator A5080969602 @default.
- W2000503364 date "2013-11-01" @default.
- W2000503364 modified "2023-10-05" @default.
- W2000503364 title "A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals" @default.
- W2000503364 cites W1613756701 @default.
- W2000503364 cites W1647645866 @default.
- W2000503364 cites W1969445141 @default.
- W2000503364 cites W2001836363 @default.
- W2000503364 cites W2040884411 @default.
- W2000503364 cites W2051812123 @default.
- W2000503364 cites W2061043032 @default.
- W2000503364 cites W2066033824 @default.
- W2000503364 cites W2068540700 @default.
- W2000503364 cites W2071878275 @default.
- W2000503364 cites W2087070363 @default.
- W2000503364 cites W2094265147 @default.
- W2000503364 cites W2117275225 @default.
- W2000503364 cites W2131274108 @default.
- W2000503364 cites W2135983366 @default.
- W2000503364 cites W2140884902 @default.
- W2000503364 cites W2145710484 @default.
- W2000503364 cites W2158698691 @default.
- W2000503364 cites W2164368909 @default.
- W2000503364 cites W2170505850 @default.
- W2000503364 cites W2171221410 @default.
- W2000503364 cites W2171801645 @default.
- W2000503364 doi "https://doi.org/10.1016/j.bspc.2013.06.014" @default.
- W2000503364 hasPublicationYear "2013" @default.
- W2000503364 type Work @default.
- W2000503364 sameAs 2000503364 @default.
- W2000503364 citedByCount "135" @default.
- W2000503364 countsByYear W20005033642014 @default.
- W2000503364 countsByYear W20005033642015 @default.
- W2000503364 countsByYear W20005033642016 @default.
- W2000503364 countsByYear W20005033642017 @default.
- W2000503364 countsByYear W20005033642018 @default.
- W2000503364 countsByYear W20005033642019 @default.
- W2000503364 countsByYear W20005033642020 @default.
- W2000503364 countsByYear W20005033642021 @default.
- W2000503364 countsByYear W20005033642022 @default.
- W2000503364 countsByYear W20005033642023 @default.
- W2000503364 crossrefType "journal-article" @default.
- W2000503364 hasAuthorship W2000503364A5043230577 @default.
- W2000503364 hasAuthorship W2000503364A5056241875 @default.
- W2000503364 hasAuthorship W2000503364A5080969602 @default.
- W2000503364 hasConcept C106131492 @default.
- W2000503364 hasConcept C116390426 @default.
- W2000503364 hasConcept C119857082 @default.
- W2000503364 hasConcept C127413603 @default.
- W2000503364 hasConcept C138885662 @default.
- W2000503364 hasConcept C146978453 @default.
- W2000503364 hasConcept C154945302 @default.
- W2000503364 hasConcept C21036866 @default.
- W2000503364 hasConcept C31972630 @default.
- W2000503364 hasConcept C41008148 @default.
- W2000503364 hasConcept C41895202 @default.
- W2000503364 hasConcept C50644808 @default.
- W2000503364 hasConcept C526921623 @default.
- W2000503364 hasConceptScore W2000503364C106131492 @default.
- W2000503364 hasConceptScore W2000503364C116390426 @default.
- W2000503364 hasConceptScore W2000503364C119857082 @default.
- W2000503364 hasConceptScore W2000503364C127413603 @default.
- W2000503364 hasConceptScore W2000503364C138885662 @default.
- W2000503364 hasConceptScore W2000503364C146978453 @default.
- W2000503364 hasConceptScore W2000503364C154945302 @default.
- W2000503364 hasConceptScore W2000503364C21036866 @default.
- W2000503364 hasConceptScore W2000503364C31972630 @default.
- W2000503364 hasConceptScore W2000503364C41008148 @default.
- W2000503364 hasConceptScore W2000503364C41895202 @default.
- W2000503364 hasConceptScore W2000503364C50644808 @default.
- W2000503364 hasConceptScore W2000503364C526921623 @default.
- W2000503364 hasIssue "6" @default.
- W2000503364 hasLocation W20005033641 @default.
- W2000503364 hasOpenAccess W2000503364 @default.
- W2000503364 hasPrimaryLocation W20005033641 @default.
- W2000503364 hasRelatedWork W2062905336 @default.
- W2000503364 hasRelatedWork W2961085424 @default.
- W2000503364 hasRelatedWork W3046775127 @default.
- W2000503364 hasRelatedWork W3170094116 @default.
- W2000503364 hasRelatedWork W4205958290 @default.
- W2000503364 hasRelatedWork W4285260836 @default.
- W2000503364 hasRelatedWork W4286629047 @default.
- W2000503364 hasRelatedWork W4306321456 @default.
- W2000503364 hasRelatedWork W4306674287 @default.
- W2000503364 hasRelatedWork W4224009465 @default.
- W2000503364 hasVolume "8" @default.
- W2000503364 isParatext "false" @default.
- W2000503364 isRetracted "false" @default.
- W2000503364 magId "2000503364" @default.
- W2000503364 workType "article" @default.