Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000512186> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2000512186 abstract "Abstract A Fortran 90 program CESOS for the calculation of the two-particle intrinsic coefficients of fractional parentage for several j-shells with isospin and an arbitrary number of oscillator quanta (CESOs) is presented. The implemented procedure for CESOs calculation consistently follows the principles of antisymmetry and translational invariance. The approach is based on a simple enumeration scheme for antisymmetric many-particle states, efficient algorithms for calculation of the coefficients of fractional parentage for j-shells with isospin, and construction of the subspace of the center-of-mass Hamiltonian eigenvectors corresponding to the minimal eigenvalue equal to 3/2 (in ℏω). The program provides fast calculation of CESOs for a given particle number and produces results possessing small numerical uncertainties. The introduced CESOs may be used for calculation of expectation values of two-particle nuclear shell-model operators within the isospin formalism. Program summary Program title: CESOS Catalogue identifier: AELT_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELT_v1_0.html Program obtainable from: CPC Program Library, Queenʼs University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 932 No. of bytes in distributed program, including test data, etc.: 61 023 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any computer with a Fortran 90 compiler Operating system: Windows XP, Linux RAM: The memory demand depends on the number of particles A and the excitation energy of the system E x . Computation of the A = 6 particle system with the total angular momentum J = 0 and the total isospin T = 1 requires around 4 kB of RAM at E x = 0 , ∼ 3 MB at E x = 3 , and ∼ 172 MB at E x = 5 . Classification: 17.18 Nature of problem: The code CESOS generates a list of two-particle intrinsic coefficients of fractional parentage for several j-shells with isospin. Solution method: The method is based on the observation that CESOs may be obtained by diagonalizing the center-of-mass Hamiltonian in the basis set of antisymmetric A-particle oscillator functions with singled out dependence on Jacobi coordinates of two last particles and choosing the subspace of its eigenvectors corresponding to the minimal eigenvalue equal to 3/2. Restrictions: One run of the code CESOS generates CESOs for one specified set of ( A , E x , J , T ) values only. The restrictions on the ( A , E x , J , T ) values are completely determined by the restrictions on the computation of the single-shell CFPs and two-particle multishell CFPs (GCFPs) [1]. The full sets of single-shell CFPs may be calculated up to the j = 9 / 2 shell (for any particular shell of the configuration); the shell with j ⩾ 11 / 2 cannot get full (it is the implementation constraint). The calculation of GCFPs is limited by A 86 when E x = 0 (due to the memory constraints); small numbers of particles allow significantly higher excitations. Any allowed values of J and T may be chosen for the specified values of A and E x . The complete list of allowed values of J and T for the chosen values of A and E x may be generated by the GCFP program – CPC Program Library, Catalogue Id. AEBI_v1_0. The actual scale of the CESOs computation problem depends strongly on the magnitude of the A and E x values. Though there are no limitations on A and E x values (within the limits of single-shell CFPs and multishell CFPs calculation), however the generation of corresponding list of CESOs is the subject of available computing resources. For example, the computing time of CESOs for A = 6 , J T = 10 at E x = 5 took around 14 hours. The system with A = 11 , J T = 1 / 2 3 / 2 at E x = 2 requires around 15 hours. These computations were performed on Pentium 3 GHz PC with 1 GB RAM [2]. Unusual features: It is possible to test the computed CESOs without saving them to a file. This allows the user to learn their number and approximate computation time and to evaluate the accuracy of calculations. Additional comments: The program CESOS uses the code from GCFP program for calculation of the two-particle multishell coefficients of fractional parentage. Running time: It depends on the size of the problem. The A = 6 particle system with the J T = 01 took around 31 seconds on Pentium 3 GHz PC with 1 GB RAM at E x = 3 and about 2.6 hours at E x = 5 . References: [1] A. Deveikis, A. Juodagalvis, Comp. Phys. Comm. 179 (2008) 607. [2] A. Deveikis, A. Fedurtsya, Phys. Part. Nucl. Lett. 8 (2011) 484." @default.
- W2000512186 created "2016-06-24" @default.
- W2000512186 creator A5042773952 @default.
- W2000512186 date "2012-06-01" @default.
- W2000512186 modified "2023-09-27" @default.
- W2000512186 title "A computer program for two-particle intrinsic coefficients of fractional parentage" @default.
- W2000512186 cites W2042680669 @default.
- W2000512186 doi "https://doi.org/10.1016/j.cpc.2012.01.027" @default.
- W2000512186 hasPublicationYear "2012" @default.
- W2000512186 type Work @default.
- W2000512186 sameAs 2000512186 @default.
- W2000512186 citedByCount "0" @default.
- W2000512186 crossrefType "journal-article" @default.
- W2000512186 hasAuthorship W2000512186A5042773952 @default.
- W2000512186 hasConcept C111368507 @default.
- W2000512186 hasConcept C121332964 @default.
- W2000512186 hasConcept C121864883 @default.
- W2000512186 hasConcept C127313418 @default.
- W2000512186 hasConcept C199360897 @default.
- W2000512186 hasConcept C2777362769 @default.
- W2000512186 hasConcept C2778517922 @default.
- W2000512186 hasConcept C33923547 @default.
- W2000512186 hasConcept C41008148 @default.
- W2000512186 hasConceptScore W2000512186C111368507 @default.
- W2000512186 hasConceptScore W2000512186C121332964 @default.
- W2000512186 hasConceptScore W2000512186C121864883 @default.
- W2000512186 hasConceptScore W2000512186C127313418 @default.
- W2000512186 hasConceptScore W2000512186C199360897 @default.
- W2000512186 hasConceptScore W2000512186C2777362769 @default.
- W2000512186 hasConceptScore W2000512186C2778517922 @default.
- W2000512186 hasConceptScore W2000512186C33923547 @default.
- W2000512186 hasConceptScore W2000512186C41008148 @default.
- W2000512186 hasLocation W20005121861 @default.
- W2000512186 hasOpenAccess W2000512186 @default.
- W2000512186 hasPrimaryLocation W20005121861 @default.
- W2000512186 hasRelatedWork W1884381009 @default.
- W2000512186 hasRelatedWork W1965726095 @default.
- W2000512186 hasRelatedWork W1971128837 @default.
- W2000512186 hasRelatedWork W1975415774 @default.
- W2000512186 hasRelatedWork W1990034663 @default.
- W2000512186 hasRelatedWork W1994329420 @default.
- W2000512186 hasRelatedWork W2010900834 @default.
- W2000512186 hasRelatedWork W2013697099 @default.
- W2000512186 hasRelatedWork W2023052073 @default.
- W2000512186 hasRelatedWork W2032297559 @default.
- W2000512186 hasRelatedWork W2042680669 @default.
- W2000512186 hasRelatedWork W2057683910 @default.
- W2000512186 hasRelatedWork W2066284294 @default.
- W2000512186 hasRelatedWork W2080341818 @default.
- W2000512186 hasRelatedWork W2087180458 @default.
- W2000512186 hasRelatedWork W2089348311 @default.
- W2000512186 hasRelatedWork W2101514339 @default.
- W2000512186 hasRelatedWork W2131600416 @default.
- W2000512186 hasRelatedWork W2336558640 @default.
- W2000512186 hasRelatedWork W3100649570 @default.
- W2000512186 isParatext "false" @default.
- W2000512186 isRetracted "false" @default.
- W2000512186 magId "2000512186" @default.
- W2000512186 workType "article" @default.