Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000546535> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2000546535 endingPage "59" @default.
- W2000546535 startingPage "35" @default.
- W2000546535 abstract "With a nilpotent element in a semisimple Lie algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German g> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>g</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> one associates a finitely generated associative algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper W> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>W</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> called <italic>a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper W> <mml:semantics> <mml:mi>W</mml:mi> <mml:annotation encoding=application/x-tex>W</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra of finite type</italic>. This algebra is obtained from the universal enveloping algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper U left-parenthesis German g right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>g</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>U(mathfrak {g})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by a certain Hamiltonian reduction. We observe that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper W> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>W</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the invariant algebra for an action of a reductive group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with Lie algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German g> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>g</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a quantized symplectic affine variety and use this observation to study <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper W> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>W</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our results include an alternative definition of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper W> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>W</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a relation between the sets of prime ideals of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper W> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>W</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of the corresponding universal enveloping algebra, the existence of a one-dimensional representation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper W> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>W</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the case of classical <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German g> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>g</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {g}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the separation of elements of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper W> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>W</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {W}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by finite-dimensional representations." @default.
- W2000546535 created "2016-06-24" @default.
- W2000546535 creator A5060786290 @default.
- W2000546535 date "2009-09-18" @default.
- W2000546535 modified "2023-09-30" @default.
- W2000546535 title "Quantized symplectic actions and 𝑊-algebras" @default.
- W2000546535 cites W1564406588 @default.
- W2000546535 cites W1594578859 @default.
- W2000546535 cites W1638979417 @default.
- W2000546535 cites W1819739044 @default.
- W2000546535 cites W1982565394 @default.
- W2000546535 cites W2006054209 @default.
- W2000546535 cites W2016683314 @default.
- W2000546535 cites W2019149880 @default.
- W2000546535 cites W2019959857 @default.
- W2000546535 cites W2021261647 @default.
- W2000546535 cites W2027117452 @default.
- W2000546535 cites W2027450954 @default.
- W2000546535 cites W2043098012 @default.
- W2000546535 cites W2056003479 @default.
- W2000546535 cites W2066456685 @default.
- W2000546535 cites W2071199161 @default.
- W2000546535 cites W2087986404 @default.
- W2000546535 cites W2090406856 @default.
- W2000546535 cites W2098020860 @default.
- W2000546535 cites W2111930295 @default.
- W2000546535 cites W2528186593 @default.
- W2000546535 cites W2962707824 @default.
- W2000546535 cites W2963457026 @default.
- W2000546535 cites W2997262122 @default.
- W2000546535 cites W3099581322 @default.
- W2000546535 cites W4233314774 @default.
- W2000546535 doi "https://doi.org/10.1090/s0894-0347-09-00648-1" @default.
- W2000546535 hasPublicationYear "2009" @default.
- W2000546535 type Work @default.
- W2000546535 sameAs 2000546535 @default.
- W2000546535 citedByCount "95" @default.
- W2000546535 countsByYear W20005465352012 @default.
- W2000546535 countsByYear W20005465352013 @default.
- W2000546535 countsByYear W20005465352014 @default.
- W2000546535 countsByYear W20005465352015 @default.
- W2000546535 countsByYear W20005465352016 @default.
- W2000546535 countsByYear W20005465352017 @default.
- W2000546535 countsByYear W20005465352018 @default.
- W2000546535 countsByYear W20005465352019 @default.
- W2000546535 countsByYear W20005465352020 @default.
- W2000546535 countsByYear W20005465352021 @default.
- W2000546535 countsByYear W20005465352022 @default.
- W2000546535 countsByYear W20005465352023 @default.
- W2000546535 crossrefType "journal-article" @default.
- W2000546535 hasAuthorship W2000546535A5060786290 @default.
- W2000546535 hasBestOaLocation W20005465351 @default.
- W2000546535 hasConcept C11413529 @default.
- W2000546535 hasConcept C136119220 @default.
- W2000546535 hasConcept C154945302 @default.
- W2000546535 hasConcept C18903297 @default.
- W2000546535 hasConcept C202444582 @default.
- W2000546535 hasConcept C2776321320 @default.
- W2000546535 hasConcept C2777299769 @default.
- W2000546535 hasConcept C33923547 @default.
- W2000546535 hasConcept C41008148 @default.
- W2000546535 hasConcept C86803240 @default.
- W2000546535 hasConceptScore W2000546535C11413529 @default.
- W2000546535 hasConceptScore W2000546535C136119220 @default.
- W2000546535 hasConceptScore W2000546535C154945302 @default.
- W2000546535 hasConceptScore W2000546535C18903297 @default.
- W2000546535 hasConceptScore W2000546535C202444582 @default.
- W2000546535 hasConceptScore W2000546535C2776321320 @default.
- W2000546535 hasConceptScore W2000546535C2777299769 @default.
- W2000546535 hasConceptScore W2000546535C33923547 @default.
- W2000546535 hasConceptScore W2000546535C41008148 @default.
- W2000546535 hasConceptScore W2000546535C86803240 @default.
- W2000546535 hasIssue "1" @default.
- W2000546535 hasLocation W20005465351 @default.
- W2000546535 hasLocation W20005465352 @default.
- W2000546535 hasOpenAccess W2000546535 @default.
- W2000546535 hasPrimaryLocation W20005465351 @default.
- W2000546535 hasRelatedWork W1529400504 @default.
- W2000546535 hasRelatedWork W1892467659 @default.
- W2000546535 hasRelatedWork W2045715842 @default.
- W2000546535 hasRelatedWork W2105880240 @default.
- W2000546535 hasRelatedWork W2349865494 @default.
- W2000546535 hasRelatedWork W2372553222 @default.
- W2000546535 hasRelatedWork W2808586768 @default.
- W2000546535 hasRelatedWork W2925832130 @default.
- W2000546535 hasRelatedWork W2998403542 @default.
- W2000546535 hasRelatedWork W3157620392 @default.
- W2000546535 hasVolume "23" @default.
- W2000546535 isParatext "false" @default.
- W2000546535 isRetracted "false" @default.
- W2000546535 magId "2000546535" @default.
- W2000546535 workType "article" @default.