Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000556874> ?p ?o ?g. }
- W2000556874 endingPage "169" @default.
- W2000556874 startingPage "148" @default.
- W2000556874 abstract "Volcanic areas play a key role in the input of elements into the ocean and in the regulation of the geological carbon cycle. The aim of this study is to investigate the budget of silicate weathering in an active volcanic area. We compared the fluxes of the two major weathering regimes occurring at low temperature in soils and at high temperature in the active volcanic arc of Kamchatka, respectively. The volcanic activity, by inducing geothermal circulation and releasing gases to the surface, produces extreme conditions in which intense water–rock interactions occur and may have a strong impact on the weathering budgets. Our results show that the chemical composition of the Kamchatka river water is controlled by surface low-temperature weathering, atmospheric input and, in some limited cases, strongly imprinted by high-temperature water–rock reactions. We have determined the contribution of each source and calculated the rates of CO2 consumption and chemical weathering resulting from low and high-temperature water/rock interactions. The weathering rates (between 7 and 13.7 t/km2/yr for cations only) and atmospheric CO2 consumption rates (∼0.33–0.46 × 106 mol/km2/yr for Kamchatka River) due to rock weathering in soils (low-temperature) are entirely consistent with the previously published global weathering laws relating weathering rates of basalts with runoff and temperature. In the Kamchatka River, CO2 consumption derived from hydrothermal activity represents about 11% of the total HCO3 flux exported by the river. The high-temperature weathering process explains 25% of the total cationic weathering rate in the Kamchatka River. Although in the rivers non-affected by hydrothermal activity, the main weathering agent is carbonic acid (reflected in the abundance of HCO3- in rivers), in the region most impacted by hydrothermalism, the protons responsible for minerals dissolution are provided not only by carbonic acid, but also by sulphuric and hydrochloric acid. A clear increase of weathering rates in rivers impacted by sulphuric acid can be observed. In the Kamchatka River, 19% of cations are released by hydrothermal acids or the oxidative weathering of sulphur minerals. Our results emphasise the important impact of both low and high-temperature weathering of volcanic rocks on global weathering fluxes to the ocean. Our results also show that besides carbonic acid derived from atmospheric CO2, hydrochloric acid and especially sulphuric acid are important weathering agents. Clearly, sulphuric acid, with hydrothermal activity, are key parameters that cause first-order increases of the chemical weathering rates in volcanic areas. In these areas, accurate determination of weathering budgets in volcanic area will require to better quantify sulphuric acid impact." @default.
- W2000556874 created "2016-06-24" @default.
- W2000556874 creator A5018256683 @default.
- W2000556874 creator A5023432117 @default.
- W2000556874 creator A5026560124 @default.
- W2000556874 creator A5038010742 @default.
- W2000556874 creator A5078618171 @default.
- W2000556874 date "2009-01-01" @default.
- W2000556874 modified "2023-10-17" @default.
- W2000556874 title "Fluxes of high- versus low-temperature water–rock interactions in aerial volcanic areas: Example from the Kamchatka Peninsula, Russia" @default.
- W2000556874 cites W1968175026 @default.
- W2000556874 cites W1968586556 @default.
- W2000556874 cites W1971051439 @default.
- W2000556874 cites W1972484192 @default.
- W2000556874 cites W1974353877 @default.
- W2000556874 cites W1976620802 @default.
- W2000556874 cites W1976723259 @default.
- W2000556874 cites W1977842012 @default.
- W2000556874 cites W1977979180 @default.
- W2000556874 cites W1979689568 @default.
- W2000556874 cites W1984698183 @default.
- W2000556874 cites W1984942046 @default.
- W2000556874 cites W1988549403 @default.
- W2000556874 cites W1993280670 @default.
- W2000556874 cites W1998351750 @default.
- W2000556874 cites W2000179986 @default.
- W2000556874 cites W2002185167 @default.
- W2000556874 cites W2003301530 @default.
- W2000556874 cites W2004272127 @default.
- W2000556874 cites W2005024333 @default.
- W2000556874 cites W2005139830 @default.
- W2000556874 cites W2006434547 @default.
- W2000556874 cites W2008587428 @default.
- W2000556874 cites W2010247646 @default.
- W2000556874 cites W2011362073 @default.
- W2000556874 cites W2011567504 @default.
- W2000556874 cites W2013653597 @default.
- W2000556874 cites W2014333124 @default.
- W2000556874 cites W2019211337 @default.
- W2000556874 cites W2021498615 @default.
- W2000556874 cites W2034684996 @default.
- W2000556874 cites W2039380923 @default.
- W2000556874 cites W2039912317 @default.
- W2000556874 cites W2041737031 @default.
- W2000556874 cites W2041938995 @default.
- W2000556874 cites W2045702368 @default.
- W2000556874 cites W2049813468 @default.
- W2000556874 cites W2051757039 @default.
- W2000556874 cites W2053137292 @default.
- W2000556874 cites W2056509981 @default.
- W2000556874 cites W2057951261 @default.
- W2000556874 cites W2059027044 @default.
- W2000556874 cites W2062806345 @default.
- W2000556874 cites W2064145353 @default.
- W2000556874 cites W2069136944 @default.
- W2000556874 cites W2070283082 @default.
- W2000556874 cites W2073034460 @default.
- W2000556874 cites W2076595859 @default.
- W2000556874 cites W2076817913 @default.
- W2000556874 cites W2078566772 @default.
- W2000556874 cites W2078767903 @default.
- W2000556874 cites W2079395527 @default.
- W2000556874 cites W2080835316 @default.
- W2000556874 cites W2081374273 @default.
- W2000556874 cites W2082653949 @default.
- W2000556874 cites W2084849445 @default.
- W2000556874 cites W2085776063 @default.
- W2000556874 cites W2086613667 @default.
- W2000556874 cites W2088841279 @default.
- W2000556874 cites W2090968131 @default.
- W2000556874 cites W2096183918 @default.
- W2000556874 cites W2097828895 @default.
- W2000556874 cites W2105928072 @default.
- W2000556874 cites W2122321897 @default.
- W2000556874 cites W2133623351 @default.
- W2000556874 cites W2137133495 @default.
- W2000556874 cites W2166626396 @default.
- W2000556874 doi "https://doi.org/10.1016/j.gca.2008.09.012" @default.
- W2000556874 hasPublicationYear "2009" @default.
- W2000556874 type Work @default.
- W2000556874 sameAs 2000556874 @default.
- W2000556874 citedByCount "57" @default.
- W2000556874 countsByYear W20005568742012 @default.
- W2000556874 countsByYear W20005568742013 @default.
- W2000556874 countsByYear W20005568742014 @default.
- W2000556874 countsByYear W20005568742015 @default.
- W2000556874 countsByYear W20005568742016 @default.
- W2000556874 countsByYear W20005568742017 @default.
- W2000556874 countsByYear W20005568742018 @default.
- W2000556874 countsByYear W20005568742021 @default.
- W2000556874 countsByYear W20005568742022 @default.
- W2000556874 countsByYear W20005568742023 @default.
- W2000556874 crossrefType "journal-article" @default.
- W2000556874 hasAuthorship W2000556874A5018256683 @default.
- W2000556874 hasAuthorship W2000556874A5023432117 @default.
- W2000556874 hasAuthorship W2000556874A5026560124 @default.
- W2000556874 hasAuthorship W2000556874A5038010742 @default.
- W2000556874 hasAuthorship W2000556874A5078618171 @default.