Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000559629> ?p ?o ?g. }
- W2000559629 endingPage "3096" @default.
- W2000559629 startingPage "3091" @default.
- W2000559629 abstract "Escherichia coli thioredoxin contains two tryptophan residues (Trp28 and Trp31) situated close to the active site disulfide/dithiol. In order to probe the structural and functional roles of tryptophan in the mechanism of E. coli thioredoxin (Trx), we have replaced Trp28 with alanine using site-directed mutagenesis and expressed the mutant protein W28A in E. coli. Changes in the behavior of the mutant protein compared with the wild-type protein have been monitored by a number of physical and spectroscopic techniques and enzyme assays. As expected, removal of a tryptophan residue causes profound changes in the fluorescence spectrum of thioredoxin, particularly for the reduced protein (Trx-(SH)2), and to a lesser extent for the oxidized protein (Trx-S2). These results show that the major contribution to the strongly quenched fluorescence of Trx-S2 in both wild-type and mutant proteins is from Trp31, whereas the higher fluorescence quantum yield of Trx-(SH)2 in the wild-type protein is dominated by the emission from Trp28. The fluorescence, CD, and 1H NMR spectra are all indicative that the mutant protein is fully folded at pH 7 and room temperature, and, despite the significance of the change, from a tryptophan in close proximity to the active site to an alanine, the functions of the protein appear to be largely intact. W28A Trx-S2 is a good substrate for thioredoxin reductase, and W28A Trx-(SH)2 is as efficient as wild-type protein in reduction of insulin disulfides. DNA polymerase activity exhibited by the complex of phage T7 gene 5 protein and Trx-(SH)2 is affected only marginally by the W28A substitution, consistent with the buried position of Trp28 in the protein. However, the thermodynamic stability of the molecule appears to have been greatly reduced by the mutation: guanidine hydrochloride unfolds the protein at a significantly lower concentration for the mutant than for wild type, and the thermal stability is reduced by about 10°C in each case. The stability of each form of the protein appears to be reduced by the same amount, an indication that the effect of the mutation is identical in both forms of the protein. Thus, despite its close proximity to the active site, the Trp28 residue of thioredoxin is not apparently essential to the electron transfer mechanism, but rather contributes to the stability of the protein fold in the active site region. Escherichia coli thioredoxin contains two tryptophan residues (Trp28 and Trp31) situated close to the active site disulfide/dithiol. In order to probe the structural and functional roles of tryptophan in the mechanism of E. coli thioredoxin (Trx), we have replaced Trp28 with alanine using site-directed mutagenesis and expressed the mutant protein W28A in E. coli. Changes in the behavior of the mutant protein compared with the wild-type protein have been monitored by a number of physical and spectroscopic techniques and enzyme assays. As expected, removal of a tryptophan residue causes profound changes in the fluorescence spectrum of thioredoxin, particularly for the reduced protein (Trx-(SH)2), and to a lesser extent for the oxidized protein (Trx-S2). These results show that the major contribution to the strongly quenched fluorescence of Trx-S2 in both wild-type and mutant proteins is from Trp31, whereas the higher fluorescence quantum yield of Trx-(SH)2 in the wild-type protein is dominated by the emission from Trp28. The fluorescence, CD, and 1H NMR spectra are all indicative that the mutant protein is fully folded at pH 7 and room temperature, and, despite the significance of the change, from a tryptophan in close proximity to the active site to an alanine, the functions of the protein appear to be largely intact. W28A Trx-S2 is a good substrate for thioredoxin reductase, and W28A Trx-(SH)2 is as efficient as wild-type protein in reduction of insulin disulfides. DNA polymerase activity exhibited by the complex of phage T7 gene 5 protein and Trx-(SH)2 is affected only marginally by the W28A substitution, consistent with the buried position of Trp28 in the protein. However, the thermodynamic stability of the molecule appears to have been greatly reduced by the mutation: guanidine hydrochloride unfolds the protein at a significantly lower concentration for the mutant than for wild type, and the thermal stability is reduced by about 10°C in each case. The stability of each form of the protein appears to be reduced by the same amount, an indication that the effect of the mutation is identical in both forms of the protein. Thus, despite its close proximity to the active site, the Trp28 residue of thioredoxin is not apparently essential to the electron transfer mechanism, but rather contributes to the stability of the protein fold in the active site region." @default.
- W2000559629 created "2016-06-24" @default.
- W2000559629 creator A5059577772 @default.
- W2000559629 creator A5060626982 @default.
- W2000559629 creator A5074430411 @default.
- W2000559629 creator A5074897127 @default.
- W2000559629 creator A5079550858 @default.
- W2000559629 date "1996-02-01" @default.
- W2000559629 modified "2023-10-09" @default.
- W2000559629 title "Replacement of Trp28 in Escherichia coli Thioredoxin by Site-directed Mutagenesis Affects Thermodynamic Stability but Not Function" @default.
- W2000559629 cites W1491264880 @default.
- W2000559629 cites W1543105845 @default.
- W2000559629 cites W1546917481 @default.
- W2000559629 cites W1551150032 @default.
- W2000559629 cites W1555021163 @default.
- W2000559629 cites W1555938743 @default.
- W2000559629 cites W1569753682 @default.
- W2000559629 cites W1570213855 @default.
- W2000559629 cites W1587695639 @default.
- W2000559629 cites W1603513572 @default.
- W2000559629 cites W1967098646 @default.
- W2000559629 cites W1981551953 @default.
- W2000559629 cites W1990132991 @default.
- W2000559629 cites W1991450397 @default.
- W2000559629 cites W1993844842 @default.
- W2000559629 cites W1994948949 @default.
- W2000559629 cites W1996125480 @default.
- W2000559629 cites W1999174164 @default.
- W2000559629 cites W2024470778 @default.
- W2000559629 cites W2028040247 @default.
- W2000559629 cites W2035674607 @default.
- W2000559629 cites W2039679198 @default.
- W2000559629 cites W2048535798 @default.
- W2000559629 cites W2079134175 @default.
- W2000559629 cites W2080569016 @default.
- W2000559629 cites W2112914900 @default.
- W2000559629 cites W2121096033 @default.
- W2000559629 cites W2132863919 @default.
- W2000559629 cites W2152614869 @default.
- W2000559629 cites W2269862327 @default.
- W2000559629 cites W4247896860 @default.
- W2000559629 doi "https://doi.org/10.1074/jbc.271.6.3091" @default.
- W2000559629 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8621706" @default.
- W2000559629 hasPublicationYear "1996" @default.
- W2000559629 type Work @default.
- W2000559629 sameAs 2000559629 @default.
- W2000559629 citedByCount "25" @default.
- W2000559629 countsByYear W20005596292013 @default.
- W2000559629 countsByYear W20005596292015 @default.
- W2000559629 countsByYear W20005596292021 @default.
- W2000559629 crossrefType "journal-article" @default.
- W2000559629 hasAuthorship W2000559629A5059577772 @default.
- W2000559629 hasAuthorship W2000559629A5060626982 @default.
- W2000559629 hasAuthorship W2000559629A5074430411 @default.
- W2000559629 hasAuthorship W2000559629A5074897127 @default.
- W2000559629 hasAuthorship W2000559629A5079550858 @default.
- W2000559629 hasBestOaLocation W20005596291 @default.
- W2000559629 hasConcept C103408237 @default.
- W2000559629 hasConcept C104317684 @default.
- W2000559629 hasConcept C143065580 @default.
- W2000559629 hasConcept C16318435 @default.
- W2000559629 hasConcept C181199279 @default.
- W2000559629 hasConcept C185592680 @default.
- W2000559629 hasConcept C207583985 @default.
- W2000559629 hasConcept C2776706248 @default.
- W2000559629 hasConcept C2777737464 @default.
- W2000559629 hasConcept C2779856020 @default.
- W2000559629 hasConcept C2780227090 @default.
- W2000559629 hasConcept C3623737 @default.
- W2000559629 hasConcept C41183919 @default.
- W2000559629 hasConcept C515207424 @default.
- W2000559629 hasConcept C547475151 @default.
- W2000559629 hasConcept C55493867 @default.
- W2000559629 hasConcept C70412867 @default.
- W2000559629 hasConcept C86803240 @default.
- W2000559629 hasConceptScore W2000559629C103408237 @default.
- W2000559629 hasConceptScore W2000559629C104317684 @default.
- W2000559629 hasConceptScore W2000559629C143065580 @default.
- W2000559629 hasConceptScore W2000559629C16318435 @default.
- W2000559629 hasConceptScore W2000559629C181199279 @default.
- W2000559629 hasConceptScore W2000559629C185592680 @default.
- W2000559629 hasConceptScore W2000559629C207583985 @default.
- W2000559629 hasConceptScore W2000559629C2776706248 @default.
- W2000559629 hasConceptScore W2000559629C2777737464 @default.
- W2000559629 hasConceptScore W2000559629C2779856020 @default.
- W2000559629 hasConceptScore W2000559629C2780227090 @default.
- W2000559629 hasConceptScore W2000559629C3623737 @default.
- W2000559629 hasConceptScore W2000559629C41183919 @default.
- W2000559629 hasConceptScore W2000559629C515207424 @default.
- W2000559629 hasConceptScore W2000559629C547475151 @default.
- W2000559629 hasConceptScore W2000559629C55493867 @default.
- W2000559629 hasConceptScore W2000559629C70412867 @default.
- W2000559629 hasConceptScore W2000559629C86803240 @default.
- W2000559629 hasIssue "6" @default.
- W2000559629 hasLocation W20005596291 @default.
- W2000559629 hasOpenAccess W2000559629 @default.
- W2000559629 hasPrimaryLocation W20005596291 @default.
- W2000559629 hasRelatedWork W1966599431 @default.