Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000565632> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2000565632 endingPage "3082" @default.
- W2000565632 startingPage "3057" @default.
- W2000565632 abstract "We describe a method for noise reduction in chaotic systems that is based on projection of the set of points comprising an embedded noisy orbit in ${mathit{openR}}^{mathit{d}}$ toward a finite patchwork of best-fit local approximations to an m-dimensional surface M'ensuremath{subset}${mathit{openR}}^{mathit{d}}$, mensuremath{le}d. We generate the orbits by the delay coordinate construction of Ruelle and Takens [N. H. Packard et al., Phys. Rev. Lett. 45, 712 (1980); F. Takens, in Dynamical Systems and Turbulence, Warwick, 1980, edited by D. A. Rand and L.-S. Young (Springer, Berlin, 1981)] from time series v(t), which in an experimental situation we would assume to have come, together with additional high-dimensional background noise, from an underlying dynamical system ${mathit{f}}^{mathit{t}}$: Mensuremath{rightarrow}M existing on some low m-dimensional manifold M. The surface M' in ${mathit{openR}}^{mathit{d}}$ is the assumed embedded image of M. We give results of systematic studies of linear (tangent plane) projection schemes. We describe in detail the basic algorithm for implementing these schemes. We apply the algorithm iteratively to known map and flow time series to which white noise has been added. In controlled studies, we measure the signal-to-noise ratio improvements, iterating ${mathit{n}}_{mathit{M}}$ times until a stable maximum ${mathrm{ensuremath{delta}}}_{mathit{M}}$ is achieved. We present extensive results for ${mathrm{ensuremath{delta}}}_{mathit{M}}$ and ${mathit{n}}_{mathit{M}}$ for a wide range of values of embedding trial dimension d, projection dimension k, number of nearest-neighbor points for local approximation ensuremath{nu}, embedding delay ensuremath{Delta}, sampling interval ensuremath{Delta}T, initial noise amplitude scrN, and trajectory length N.We give results for very low and very high noise amplitudes 0%ensuremath{le}scrNensuremath{le}100%. We develop an empirical method for estimating the initial noise level for a given experimental time series, and for the optimal choice of algorithm parameters to achieve peak reduction. We present interesting results of application of the noise-reduction algorithm to a chaotic time series produced from a periodically driven magnetoelastic ribbon experiment on the control of chaos. Two noteworthy elements of the noise-reduction method we describe result in certain stabilizing and efficiency features. The first is our use of a physical replacement time series, which is a unique scalar time series with the property that its corresponding delay coordinate construction data state vector time series in ${mathit{openR}}^{mathit{d}}$ is optimally close to the noise-reduced replacement vector time series generated by the projection. The second is the introduction of a ``measure-ordered'' cover, which produces notable improvement in reliability, control, and computational efficiency of the whole algorithm." @default.
- W2000565632 created "2016-06-24" @default.
- W2000565632 creator A5030895117 @default.
- W2000565632 creator A5050126577 @default.
- W2000565632 date "1992-09-01" @default.
- W2000565632 modified "2023-10-03" @default.
- W2000565632 title "Local-geometric-projection method for noise reduction in chaotic maps and flows" @default.
- W2000565632 cites W1968421731 @default.
- W2000565632 cites W1975964493 @default.
- W2000565632 cites W1976620978 @default.
- W2000565632 cites W1984391316 @default.
- W2000565632 cites W1996767607 @default.
- W2000565632 cites W2001299891 @default.
- W2000565632 cites W2025360812 @default.
- W2000565632 cites W2039570025 @default.
- W2000565632 cites W2069103848 @default.
- W2000565632 cites W2072621406 @default.
- W2000565632 cites W2087298343 @default.
- W2000565632 cites W2088667464 @default.
- W2000565632 cites W2093176940 @default.
- W2000565632 cites W2125566231 @default.
- W2000565632 cites W2141394518 @default.
- W2000565632 doi "https://doi.org/10.1103/physreva.46.3057" @default.
- W2000565632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9908475" @default.
- W2000565632 hasPublicationYear "1992" @default.
- W2000565632 type Work @default.
- W2000565632 sameAs 2000565632 @default.
- W2000565632 citedByCount "136" @default.
- W2000565632 countsByYear W20005656322012 @default.
- W2000565632 countsByYear W20005656322013 @default.
- W2000565632 countsByYear W20005656322014 @default.
- W2000565632 countsByYear W20005656322015 @default.
- W2000565632 countsByYear W20005656322016 @default.
- W2000565632 countsByYear W20005656322017 @default.
- W2000565632 countsByYear W20005656322018 @default.
- W2000565632 countsByYear W20005656322020 @default.
- W2000565632 countsByYear W20005656322021 @default.
- W2000565632 countsByYear W20005656322022 @default.
- W2000565632 countsByYear W20005656322023 @default.
- W2000565632 crossrefType "journal-article" @default.
- W2000565632 hasAuthorship W2000565632A5030895117 @default.
- W2000565632 hasAuthorship W2000565632A5050126577 @default.
- W2000565632 hasConcept C105795698 @default.
- W2000565632 hasConcept C112633086 @default.
- W2000565632 hasConcept C11413529 @default.
- W2000565632 hasConcept C114614502 @default.
- W2000565632 hasConcept C115961682 @default.
- W2000565632 hasConcept C121332964 @default.
- W2000565632 hasConcept C134306372 @default.
- W2000565632 hasConcept C143724316 @default.
- W2000565632 hasConcept C151730666 @default.
- W2000565632 hasConcept C154945302 @default.
- W2000565632 hasConcept C33676613 @default.
- W2000565632 hasConcept C33923547 @default.
- W2000565632 hasConcept C41008148 @default.
- W2000565632 hasConcept C57493831 @default.
- W2000565632 hasConcept C86803240 @default.
- W2000565632 hasConcept C99498987 @default.
- W2000565632 hasConceptScore W2000565632C105795698 @default.
- W2000565632 hasConceptScore W2000565632C112633086 @default.
- W2000565632 hasConceptScore W2000565632C11413529 @default.
- W2000565632 hasConceptScore W2000565632C114614502 @default.
- W2000565632 hasConceptScore W2000565632C115961682 @default.
- W2000565632 hasConceptScore W2000565632C121332964 @default.
- W2000565632 hasConceptScore W2000565632C134306372 @default.
- W2000565632 hasConceptScore W2000565632C143724316 @default.
- W2000565632 hasConceptScore W2000565632C151730666 @default.
- W2000565632 hasConceptScore W2000565632C154945302 @default.
- W2000565632 hasConceptScore W2000565632C33676613 @default.
- W2000565632 hasConceptScore W2000565632C33923547 @default.
- W2000565632 hasConceptScore W2000565632C41008148 @default.
- W2000565632 hasConceptScore W2000565632C57493831 @default.
- W2000565632 hasConceptScore W2000565632C86803240 @default.
- W2000565632 hasConceptScore W2000565632C99498987 @default.
- W2000565632 hasIssue "6" @default.
- W2000565632 hasLocation W20005656321 @default.
- W2000565632 hasLocation W20005656322 @default.
- W2000565632 hasOpenAccess W2000565632 @default.
- W2000565632 hasPrimaryLocation W20005656321 @default.
- W2000565632 hasRelatedWork W1966425161 @default.
- W2000565632 hasRelatedWork W1982536126 @default.
- W2000565632 hasRelatedWork W1999153868 @default.
- W2000565632 hasRelatedWork W2034108275 @default.
- W2000565632 hasRelatedWork W2042415396 @default.
- W2000565632 hasRelatedWork W2092793634 @default.
- W2000565632 hasRelatedWork W2122309247 @default.
- W2000565632 hasRelatedWork W2893235368 @default.
- W2000565632 hasRelatedWork W2900687816 @default.
- W2000565632 hasRelatedWork W4241033831 @default.
- W2000565632 hasVolume "46" @default.
- W2000565632 isParatext "false" @default.
- W2000565632 isRetracted "false" @default.
- W2000565632 magId "2000565632" @default.
- W2000565632 workType "article" @default.