Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000576052> ?p ?o ?g. }
- W2000576052 endingPage "1572" @default.
- W2000576052 startingPage "1564" @default.
- W2000576052 abstract "Electrides are ionic solids with cavity-trapped electrons, which serve as the anions. Localization of electrons in well-defined trapping sites and their mutual interactions provide early examples of quantum confinement, a subject of intense current interest. We synthesized the first crystalline electride, Cs+(18-crown-6)2e−, in 1983 and determined its structure in 1986; seven others have been made since. This Account describes progress in the synthesis of both organic and inorganic electrides and points to their promise as new electronic materials. Combined studies of solvated electrons in alkali metal solutions and the complexation of alkali cations by crown ethers and cryptands made electride synthesis possible. After our synthesis of crystalline alkalides, in which alkali metal anions and encapsulated alkali cations are present, we managed to grow crystalline electrides from solutions that contained complexed alkali cations and solvated electrons. Electride research is complicated by thermal instability. Above approximately −30 °C, trapped electrons react with the ether groups of crown ethers and cryptands. Aza-cryptands replace ether oxygens with less reactive tertiary amine groups, and using those compounds, we recently synthesized the first room-temperature-stable organic electride. The magnetic and electronic properties of electrides depend on the geometry of the trapping sites and the size of the open channels that connect them. Two extremes are Cs+(15-crown-5)2e− with nearly isolated trapped electrons and K+(cryptand 2.2.2)e−, in which spin-pairing of electrons in adjacent cavities predominates below 400 K. These two electrides also differ in their electrical conductivity by nearly 10 orders of magnitude. The pronounced effect of defects on conductivity and on thermonic electron emission suggests that holes as well as electrons play important roles. Now that thermally stable organic electrides can be made, it should be possible to control the electron−hole ratio by incorporation of neutral complexant molecules. We expect that in further syntheses researchers will elaborate the parent aza-cryptands to produce new organic electrides. The promise of electrides as new electronic materials with low work functions led us and others to search for inorganic electrides. The body of extensive research studies of alkali metal inclusion in the pores of alumino-silicate zeolites provided the background for our studies of pure silica zeolites as hosts for M+ and e− and our later use of nanoporous silica gel as a carrier of high concentrations of alkali metals. Both systems have some of the characteristics of inorganic electrides, but the electrons and cations share the same space. In 2003, researchers at the Tokyo Institute of Technology synthesized an inorganic electride that has separated electrons and countercations. This thermally stable electride has a number of potentially useful properties, such as air-stability, low work function, and metallic conductivity. Now that both organic and inorganic electrides have been synthesized, we expect that experimental and theoretical research on this interesting class of materials will accelerate." @default.
- W2000576052 created "2016-06-24" @default.
- W2000576052 creator A5040160007 @default.
- W2000576052 date "2009-07-31" @default.
- W2000576052 modified "2023-10-02" @default.
- W2000576052 title "Electrides: Early Examples of Quantum Confinement" @default.
- W2000576052 cites W144591421 @default.
- W2000576052 cites W1964752287 @default.
- W2000576052 cites W1967475554 @default.
- W2000576052 cites W1970933074 @default.
- W2000576052 cites W1972495571 @default.
- W2000576052 cites W1975310258 @default.
- W2000576052 cites W1977562383 @default.
- W2000576052 cites W1979194307 @default.
- W2000576052 cites W1983017907 @default.
- W2000576052 cites W1985850979 @default.
- W2000576052 cites W1986099676 @default.
- W2000576052 cites W1992558673 @default.
- W2000576052 cites W1997354449 @default.
- W2000576052 cites W2003217748 @default.
- W2000576052 cites W2011604784 @default.
- W2000576052 cites W2013269994 @default.
- W2000576052 cites W2013750488 @default.
- W2000576052 cites W2016676089 @default.
- W2000576052 cites W2021671721 @default.
- W2000576052 cites W2022670383 @default.
- W2000576052 cites W2024445982 @default.
- W2000576052 cites W2025508392 @default.
- W2000576052 cites W2025661202 @default.
- W2000576052 cites W2027783016 @default.
- W2000576052 cites W2030496541 @default.
- W2000576052 cites W2036428514 @default.
- W2000576052 cites W2039460342 @default.
- W2000576052 cites W2040153869 @default.
- W2000576052 cites W2041155515 @default.
- W2000576052 cites W2042193927 @default.
- W2000576052 cites W2042539957 @default.
- W2000576052 cites W2045459580 @default.
- W2000576052 cites W2048574361 @default.
- W2000576052 cites W2048825925 @default.
- W2000576052 cites W2050710708 @default.
- W2000576052 cites W2052617688 @default.
- W2000576052 cites W2060839892 @default.
- W2000576052 cites W2064111555 @default.
- W2000576052 cites W2065924382 @default.
- W2000576052 cites W2067829116 @default.
- W2000576052 cites W2069338819 @default.
- W2000576052 cites W2072261299 @default.
- W2000576052 cites W2088177151 @default.
- W2000576052 cites W2091750259 @default.
- W2000576052 cites W2092320578 @default.
- W2000576052 cites W2095556464 @default.
- W2000576052 cites W2096354448 @default.
- W2000576052 cites W2270458151 @default.
- W2000576052 cites W2320735475 @default.
- W2000576052 cites W2324777075 @default.
- W2000576052 cites W2326019535 @default.
- W2000576052 cites W2326293242 @default.
- W2000576052 cites W2949675921 @default.
- W2000576052 cites W2951260518 @default.
- W2000576052 cites W976430843 @default.
- W2000576052 cites W976956156 @default.
- W2000576052 doi "https://doi.org/10.1021/ar9000857" @default.
- W2000576052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19645438" @default.
- W2000576052 hasPublicationYear "2009" @default.
- W2000576052 type Work @default.
- W2000576052 sameAs 2000576052 @default.
- W2000576052 citedByCount "217" @default.
- W2000576052 countsByYear W20005760522012 @default.
- W2000576052 countsByYear W20005760522013 @default.
- W2000576052 countsByYear W20005760522014 @default.
- W2000576052 countsByYear W20005760522015 @default.
- W2000576052 countsByYear W20005760522016 @default.
- W2000576052 countsByYear W20005760522017 @default.
- W2000576052 countsByYear W20005760522018 @default.
- W2000576052 countsByYear W20005760522019 @default.
- W2000576052 countsByYear W20005760522020 @default.
- W2000576052 countsByYear W20005760522021 @default.
- W2000576052 countsByYear W20005760522022 @default.
- W2000576052 countsByYear W20005760522023 @default.
- W2000576052 crossrefType "journal-article" @default.
- W2000576052 hasAuthorship W2000576052A5040160007 @default.
- W2000576052 hasConcept C114595235 @default.
- W2000576052 hasConcept C121332964 @default.
- W2000576052 hasConcept C145148216 @default.
- W2000576052 hasConcept C147120987 @default.
- W2000576052 hasConcept C147789679 @default.
- W2000576052 hasConcept C159467904 @default.
- W2000576052 hasConcept C178790620 @default.
- W2000576052 hasConcept C179104552 @default.
- W2000576052 hasConcept C184651966 @default.
- W2000576052 hasConcept C185592680 @default.
- W2000576052 hasConcept C198091228 @default.
- W2000576052 hasConcept C2182769 @default.
- W2000576052 hasConcept C2777255693 @default.
- W2000576052 hasConcept C42296456 @default.
- W2000576052 hasConcept C62520636 @default.
- W2000576052 hasConcept C66887884 @default.