Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000577495> ?p ?o ?g. }
- W2000577495 abstract "The safe operation of AC-DC systems requires the Monitoring of appropriate system signals, the accuracy and rapid classification of any perturbations so that protective control decisions can be made. In case of fast acting HVDC transmission system, such decisions must often be made within tens of milliseconds to guarantee safe operation from disturbances such as the common commutation failures. The detection and fast clearance of faults are important for safe and optimal operation of power systems. Due to the integration of fast acting HVDC systems in ac power systems, it is necessary to detect, classify and clear the faults as fast as possible. The source and cause of disturbances or faults must be known before appropriate mitigation action be taken. For secure operation of a system, a feasible approach is to monitor the signals so that accurate and rapid classification of fault is possible for making correct protective control decisions. However, fast and reliable fault identification is still a big challenge. It is not easy to identify HVDC faults by using pure frequency or pure time domain based methods. The pure frequency domain based methods are not suitable for the time-varying transients and the pure time domain based methods are very easily influenced by noise. Recently, due to advancement of power electronics technology, High Voltage Direct Current (HVDC) transmission technology has been utilized to identify the faults in power system. The HVDC Transmission system is very reliable, flexible and cost effective. Advances in artificial intelligence techniques such as Fuzzy, Neural and ANN etc. and Power Semiconductor devices have made tremendous impact in the identifying of faults in HVDC system. A case is made to present overview of the artificial intelligence techniques to identify the faults in HVDC transmission system." @default.
- W2000577495 created "2016-06-24" @default.
- W2000577495 creator A5016855392 @default.
- W2000577495 creator A5042560211 @default.
- W2000577495 date "2012-01-01" @default.
- W2000577495 modified "2023-10-14" @default.
- W2000577495 title "Fault identification in HVDC using artificial intelligence — Recent trends and perspective" @default.
- W2000577495 cites W1977121589 @default.
- W2000577495 cites W1980362363 @default.
- W2000577495 cites W1997609814 @default.
- W2000577495 cites W2010396583 @default.
- W2000577495 cites W2014471012 @default.
- W2000577495 cites W2018771318 @default.
- W2000577495 cites W2052465754 @default.
- W2000577495 cites W2062897671 @default.
- W2000577495 cites W2076087081 @default.
- W2000577495 cites W2083991582 @default.
- W2000577495 cites W2088443926 @default.
- W2000577495 cites W2091280890 @default.
- W2000577495 cites W2100463586 @default.
- W2000577495 cites W2104003464 @default.
- W2000577495 cites W2104609957 @default.
- W2000577495 cites W2106935068 @default.
- W2000577495 cites W2107721003 @default.
- W2000577495 cites W2108460943 @default.
- W2000577495 cites W2117343544 @default.
- W2000577495 cites W2118940966 @default.
- W2000577495 cites W2123041744 @default.
- W2000577495 cites W2124976199 @default.
- W2000577495 cites W2125428312 @default.
- W2000577495 cites W2137528640 @default.
- W2000577495 cites W2141597633 @default.
- W2000577495 cites W2142921094 @default.
- W2000577495 cites W2143982666 @default.
- W2000577495 cites W2155549308 @default.
- W2000577495 cites W2157463646 @default.
- W2000577495 cites W2159275110 @default.
- W2000577495 cites W2170205088 @default.
- W2000577495 cites W2170837877 @default.
- W2000577495 cites W2490625071 @default.
- W2000577495 cites W2536194216 @default.
- W2000577495 cites W2542204552 @default.
- W2000577495 cites W2543626130 @default.
- W2000577495 cites W4236657694 @default.
- W2000577495 cites W4245582740 @default.
- W2000577495 doi "https://doi.org/10.1109/epscicon.2012.6175256" @default.
- W2000577495 hasPublicationYear "2012" @default.
- W2000577495 type Work @default.
- W2000577495 sameAs 2000577495 @default.
- W2000577495 citedByCount "19" @default.
- W2000577495 countsByYear W20005774952012 @default.
- W2000577495 countsByYear W20005774952013 @default.
- W2000577495 countsByYear W20005774952014 @default.
- W2000577495 countsByYear W20005774952015 @default.
- W2000577495 countsByYear W20005774952016 @default.
- W2000577495 countsByYear W20005774952017 @default.
- W2000577495 countsByYear W20005774952018 @default.
- W2000577495 countsByYear W20005774952019 @default.
- W2000577495 countsByYear W20005774952020 @default.
- W2000577495 countsByYear W20005774952021 @default.
- W2000577495 countsByYear W20005774952022 @default.
- W2000577495 crossrefType "proceedings-article" @default.
- W2000577495 hasAuthorship W2000577495A5016855392 @default.
- W2000577495 hasAuthorship W2000577495A5042560211 @default.
- W2000577495 hasConcept C113608303 @default.
- W2000577495 hasConcept C115961682 @default.
- W2000577495 hasConcept C116834253 @default.
- W2000577495 hasConcept C119599485 @default.
- W2000577495 hasConcept C121332964 @default.
- W2000577495 hasConcept C127313418 @default.
- W2000577495 hasConcept C127413603 @default.
- W2000577495 hasConcept C133731056 @default.
- W2000577495 hasConcept C154945302 @default.
- W2000577495 hasConcept C163258240 @default.
- W2000577495 hasConcept C165205528 @default.
- W2000577495 hasConcept C165801399 @default.
- W2000577495 hasConcept C175551986 @default.
- W2000577495 hasConcept C200601418 @default.
- W2000577495 hasConcept C2776620479 @default.
- W2000577495 hasConcept C2780705257 @default.
- W2000577495 hasConcept C2781163877 @default.
- W2000577495 hasConcept C41008148 @default.
- W2000577495 hasConcept C50644808 @default.
- W2000577495 hasConcept C59822182 @default.
- W2000577495 hasConcept C62520636 @default.
- W2000577495 hasConcept C66322947 @default.
- W2000577495 hasConcept C761482 @default.
- W2000577495 hasConcept C76155785 @default.
- W2000577495 hasConcept C86803240 @default.
- W2000577495 hasConcept C89227174 @default.
- W2000577495 hasConcept C92018576 @default.
- W2000577495 hasConcept C99498987 @default.
- W2000577495 hasConceptScore W2000577495C113608303 @default.
- W2000577495 hasConceptScore W2000577495C115961682 @default.
- W2000577495 hasConceptScore W2000577495C116834253 @default.
- W2000577495 hasConceptScore W2000577495C119599485 @default.
- W2000577495 hasConceptScore W2000577495C121332964 @default.
- W2000577495 hasConceptScore W2000577495C127313418 @default.
- W2000577495 hasConceptScore W2000577495C127413603 @default.
- W2000577495 hasConceptScore W2000577495C133731056 @default.