Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000578237> ?p ?o ?g. }
- W2000578237 endingPage "101" @default.
- W2000578237 startingPage "94" @default.
- W2000578237 abstract "In the present work, we have performed analyte species and concentration identification using an array of ten differentially functionalized microcantilevers coupled with a back-propagation artificial neural network pattern recognition algorithm. The array consists of ten nanostructured silicon microcantilevers functionalized by polymeric and gas chromatography phases and macrocyclic receptors as spatially dense, differentially responding sensing layers for identification and quantitation of individual analyte(s) and their binary mixtures. The array response (i.e. cantilever bending) to analyte vapor was measured by an optical readout scheme and the responses were recorded for a selection of individual analytes as well as several binary mixtures. An artificial neural network (ANN) was designed and trained to recognize not only the individual analytes and binary mixtures, but also to determine the concentration of individual components in a mixture. To the best of our knowledge, ANNs have not been applied to microcantilever array responses previously to determine concentrations of individual analytes. The trained ANN correctly identified the eleven test analyte(s) as individual components, most with probabilities greater than 97%, whereas it did not misidentify an unknown (untrained) analyte. Demonstrated unique aspects of this work include an ability to measure binary mixtures and provide both qualitative (identification) and quantitative (concentration) information with array-ANN-based sensor methodologies." @default.
- W2000578237 created "2016-06-24" @default.
- W2000578237 creator A5002299887 @default.
- W2000578237 creator A5040344726 @default.
- W2000578237 creator A5081461206 @default.
- W2000578237 creator A5083364299 @default.
- W2000578237 date "2006-02-01" @default.
- W2000578237 modified "2023-09-26" @default.
- W2000578237 title "Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks" @default.
- W2000578237 cites W1560131513 @default.
- W2000578237 cites W1605051494 @default.
- W2000578237 cites W1964514613 @default.
- W2000578237 cites W1968416806 @default.
- W2000578237 cites W1971523884 @default.
- W2000578237 cites W1971758914 @default.
- W2000578237 cites W1974383036 @default.
- W2000578237 cites W1975267178 @default.
- W2000578237 cites W1975594115 @default.
- W2000578237 cites W1975676252 @default.
- W2000578237 cites W1979473795 @default.
- W2000578237 cites W1982150341 @default.
- W2000578237 cites W1987989858 @default.
- W2000578237 cites W1989077913 @default.
- W2000578237 cites W1989292319 @default.
- W2000578237 cites W1991038556 @default.
- W2000578237 cites W1991054427 @default.
- W2000578237 cites W1991910517 @default.
- W2000578237 cites W1998414016 @default.
- W2000578237 cites W2001096463 @default.
- W2000578237 cites W2001119771 @default.
- W2000578237 cites W2001237256 @default.
- W2000578237 cites W2003176169 @default.
- W2000578237 cites W2003927597 @default.
- W2000578237 cites W2006022275 @default.
- W2000578237 cites W2013503818 @default.
- W2000578237 cites W2013867553 @default.
- W2000578237 cites W2013989395 @default.
- W2000578237 cites W2017936885 @default.
- W2000578237 cites W2018569094 @default.
- W2000578237 cites W2018982780 @default.
- W2000578237 cites W2037122028 @default.
- W2000578237 cites W2040437228 @default.
- W2000578237 cites W2043799361 @default.
- W2000578237 cites W2050265220 @default.
- W2000578237 cites W2051333232 @default.
- W2000578237 cites W2052513028 @default.
- W2000578237 cites W2053719258 @default.
- W2000578237 cites W2057412819 @default.
- W2000578237 cites W2061751890 @default.
- W2000578237 cites W2062109287 @default.
- W2000578237 cites W2062639576 @default.
- W2000578237 cites W2066570062 @default.
- W2000578237 cites W2070067489 @default.
- W2000578237 cites W2081562029 @default.
- W2000578237 cites W2084726842 @default.
- W2000578237 cites W2088703564 @default.
- W2000578237 cites W2117228527 @default.
- W2000578237 cites W2120340120 @default.
- W2000578237 cites W2120686074 @default.
- W2000578237 cites W2140127367 @default.
- W2000578237 cites W2148648899 @default.
- W2000578237 cites W2331109470 @default.
- W2000578237 cites W4211124806 @default.
- W2000578237 doi "https://doi.org/10.1016/j.aca.2005.11.024" @default.
- W2000578237 hasPublicationYear "2006" @default.
- W2000578237 type Work @default.
- W2000578237 sameAs 2000578237 @default.
- W2000578237 citedByCount "47" @default.
- W2000578237 countsByYear W20005782372012 @default.
- W2000578237 countsByYear W20005782372013 @default.
- W2000578237 countsByYear W20005782372014 @default.
- W2000578237 countsByYear W20005782372015 @default.
- W2000578237 countsByYear W20005782372017 @default.
- W2000578237 countsByYear W20005782372020 @default.
- W2000578237 countsByYear W20005782372021 @default.
- W2000578237 countsByYear W20005782372022 @default.
- W2000578237 countsByYear W20005782372023 @default.
- W2000578237 crossrefType "journal-article" @default.
- W2000578237 hasAuthorship W2000578237A5002299887 @default.
- W2000578237 hasAuthorship W2000578237A5040344726 @default.
- W2000578237 hasAuthorship W2000578237A5081461206 @default.
- W2000578237 hasAuthorship W2000578237A5083364299 @default.
- W2000578237 hasConcept C10390740 @default.
- W2000578237 hasConcept C113196181 @default.
- W2000578237 hasConcept C116834253 @default.
- W2000578237 hasConcept C119857082 @default.
- W2000578237 hasConcept C153180895 @default.
- W2000578237 hasConcept C154945302 @default.
- W2000578237 hasConcept C185592680 @default.
- W2000578237 hasConcept C186060115 @default.
- W2000578237 hasConcept C33923547 @default.
- W2000578237 hasConcept C41008148 @default.
- W2000578237 hasConcept C43617362 @default.
- W2000578237 hasConcept C48372109 @default.
- W2000578237 hasConcept C50644808 @default.
- W2000578237 hasConcept C59822182 @default.
- W2000578237 hasConcept C66251956 @default.
- W2000578237 hasConcept C86803240 @default.