Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000589719> ?p ?o ?g. }
- W2000589719 endingPage "3072" @default.
- W2000589719 startingPage "3045" @default.
- W2000589719 abstract "Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25°C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0–10 atomic layers thick in Sr(HCO3)2 solutions and 0–4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 Å on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14–18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34–39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 Å (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates." @default.
- W2000589719 created "2016-06-24" @default.
- W2000589719 creator A5020861464 @default.
- W2000589719 creator A5037997406 @default.
- W2000589719 creator A5048968895 @default.
- W2000589719 creator A5074715793 @default.
- W2000589719 date "1992-08-01" @default.
- W2000589719 modified "2023-09-27" @default.
- W2000589719 title "Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr (HCO3)2−Ca (HCO3)2−CO2-H2O solutions" @default.
- W2000589719 cites W1538760274 @default.
- W2000589719 cites W1564384919 @default.
- W2000589719 cites W1627491858 @default.
- W2000589719 cites W1781531196 @default.
- W2000589719 cites W1966343419 @default.
- W2000589719 cites W1968377861 @default.
- W2000589719 cites W1968587660 @default.
- W2000589719 cites W1972628631 @default.
- W2000589719 cites W1973691821 @default.
- W2000589719 cites W1974123378 @default.
- W2000589719 cites W1974404118 @default.
- W2000589719 cites W1975717988 @default.
- W2000589719 cites W1976401495 @default.
- W2000589719 cites W1981235841 @default.
- W2000589719 cites W1981362259 @default.
- W2000589719 cites W1981926445 @default.
- W2000589719 cites W1982061723 @default.
- W2000589719 cites W1988410113 @default.
- W2000589719 cites W1992214743 @default.
- W2000589719 cites W1996167059 @default.
- W2000589719 cites W1999467975 @default.
- W2000589719 cites W2001592607 @default.
- W2000589719 cites W2014901561 @default.
- W2000589719 cites W2015496702 @default.
- W2000589719 cites W2017386151 @default.
- W2000589719 cites W2022398895 @default.
- W2000589719 cites W2025369705 @default.
- W2000589719 cites W2027854569 @default.
- W2000589719 cites W2028752158 @default.
- W2000589719 cites W2031025371 @default.
- W2000589719 cites W2037542092 @default.
- W2000589719 cites W2037620378 @default.
- W2000589719 cites W2038420236 @default.
- W2000589719 cites W2038823423 @default.
- W2000589719 cites W2038941835 @default.
- W2000589719 cites W2046020514 @default.
- W2000589719 cites W2050903220 @default.
- W2000589719 cites W2055856871 @default.
- W2000589719 cites W2063031611 @default.
- W2000589719 cites W2065539629 @default.
- W2000589719 cites W2069654218 @default.
- W2000589719 cites W2077986855 @default.
- W2000589719 cites W2083547279 @default.
- W2000589719 cites W2086660778 @default.
- W2000589719 cites W2087763125 @default.
- W2000589719 cites W2089416605 @default.
- W2000589719 cites W2090413786 @default.
- W2000589719 cites W2092050182 @default.
- W2000589719 cites W2094192245 @default.
- W2000589719 cites W2102055936 @default.
- W2000589719 cites W2109767982 @default.
- W2000589719 cites W2144283465 @default.
- W2000589719 cites W2159036218 @default.
- W2000589719 cites W2162744777 @default.
- W2000589719 cites W2163392457 @default.
- W2000589719 cites W2168649638 @default.
- W2000589719 cites W2170660600 @default.
- W2000589719 cites W2316773971 @default.
- W2000589719 cites W2321389037 @default.
- W2000589719 cites W2323189188 @default.
- W2000589719 cites W2329138424 @default.
- W2000589719 cites W2615523439 @default.
- W2000589719 cites W4229711150 @default.
- W2000589719 cites W4256281523 @default.
- W2000589719 cites W90950234 @default.
- W2000589719 doi "https://doi.org/10.1016/0016-7037(92)90289-u" @default.
- W2000589719 hasPublicationYear "1992" @default.
- W2000589719 type Work @default.
- W2000589719 sameAs 2000589719 @default.
- W2000589719 citedByCount "42" @default.
- W2000589719 countsByYear W20005897192012 @default.
- W2000589719 countsByYear W20005897192013 @default.
- W2000589719 countsByYear W20005897192014 @default.
- W2000589719 countsByYear W20005897192016 @default.
- W2000589719 countsByYear W20005897192017 @default.
- W2000589719 countsByYear W20005897192018 @default.
- W2000589719 countsByYear W20005897192020 @default.
- W2000589719 countsByYear W20005897192021 @default.
- W2000589719 countsByYear W20005897192022 @default.
- W2000589719 countsByYear W20005897192023 @default.
- W2000589719 crossrefType "journal-article" @default.
- W2000589719 hasAuthorship W2000589719A5020861464 @default.
- W2000589719 hasAuthorship W2000589719A5037997406 @default.
- W2000589719 hasAuthorship W2000589719A5048968895 @default.
- W2000589719 hasAuthorship W2000589719A5074715793 @default.
- W2000589719 hasConcept C107054158 @default.
- W2000589719 hasConcept C113196181 @default.
- W2000589719 hasConcept C114614502 @default.
- W2000589719 hasConcept C121332964 @default.