Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000590798> ?p ?o ?g. }
- W2000590798 endingPage "745" @default.
- W2000590798 startingPage "719" @default.
- W2000590798 abstract "We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting." @default.
- W2000590798 created "2016-06-24" @default.
- W2000590798 creator A5038778212 @default.
- W2000590798 creator A5084610901 @default.
- W2000590798 date "2014-10-01" @default.
- W2000590798 modified "2023-10-18" @default.
- W2000590798 title "A Galerkin formulation of the MIB method for three dimensional elliptic interface problems" @default.
- W2000590798 cites W1565967305 @default.
- W2000590798 cites W1575849776 @default.
- W2000590798 cites W1967919601 @default.
- W2000590798 cites W1973300143 @default.
- W2000590798 cites W1974936486 @default.
- W2000590798 cites W1977856502 @default.
- W2000590798 cites W1979484301 @default.
- W2000590798 cites W1979584651 @default.
- W2000590798 cites W1982085334 @default.
- W2000590798 cites W1982559185 @default.
- W2000590798 cites W1993371992 @default.
- W2000590798 cites W1996033088 @default.
- W2000590798 cites W1997235068 @default.
- W2000590798 cites W1998237130 @default.
- W2000590798 cites W2000889983 @default.
- W2000590798 cites W2001660127 @default.
- W2000590798 cites W2005316292 @default.
- W2000590798 cites W2005602846 @default.
- W2000590798 cites W2006336694 @default.
- W2000590798 cites W2011155152 @default.
- W2000590798 cites W2012707864 @default.
- W2000590798 cites W2014475794 @default.
- W2000590798 cites W2018778624 @default.
- W2000590798 cites W2022385500 @default.
- W2000590798 cites W2022615719 @default.
- W2000590798 cites W2028085547 @default.
- W2000590798 cites W2037359815 @default.
- W2000590798 cites W2039886070 @default.
- W2000590798 cites W2040290486 @default.
- W2000590798 cites W2040896717 @default.
- W2000590798 cites W2044854902 @default.
- W2000590798 cites W2045618004 @default.
- W2000590798 cites W2048098432 @default.
- W2000590798 cites W2048221940 @default.
- W2000590798 cites W2049856588 @default.
- W2000590798 cites W2050034266 @default.
- W2000590798 cites W2052978428 @default.
- W2000590798 cites W2063728911 @default.
- W2000590798 cites W2067181564 @default.
- W2000590798 cites W2067216123 @default.
- W2000590798 cites W2068600378 @default.
- W2000590798 cites W2068620214 @default.
- W2000590798 cites W2070135540 @default.
- W2000590798 cites W2071423816 @default.
- W2000590798 cites W2079823607 @default.
- W2000590798 cites W2081380269 @default.
- W2000590798 cites W2087535883 @default.
- W2000590798 cites W2092265656 @default.
- W2000590798 cites W2092284897 @default.
- W2000590798 cites W2093012115 @default.
- W2000590798 cites W2095006601 @default.
- W2000590798 cites W2095548561 @default.
- W2000590798 cites W2097060633 @default.
- W2000590798 cites W2106901161 @default.
- W2000590798 cites W2113167159 @default.
- W2000590798 cites W2113251641 @default.
- W2000590798 cites W2114589706 @default.
- W2000590798 cites W2115423556 @default.
- W2000590798 cites W2120291421 @default.
- W2000590798 cites W2123584617 @default.
- W2000590798 cites W2124686419 @default.
- W2000590798 cites W2127292566 @default.
- W2000590798 cites W2127434 @default.
- W2000590798 cites W2132306174 @default.
- W2000590798 cites W2133620072 @default.
- W2000590798 cites W2141613219 @default.
- W2000590798 cites W2143063846 @default.
- W2000590798 cites W2145851836 @default.
- W2000590798 cites W2149541064 @default.
- W2000590798 cites W2151611333 @default.
- W2000590798 cites W2158289603 @default.
- W2000590798 cites W2158488303 @default.
- W2000590798 cites W2158699284 @default.
- W2000590798 cites W2159268266 @default.
- W2000590798 cites W2162474585 @default.
- W2000590798 cites W2164655176 @default.
- W2000590798 cites W2165665236 @default.
- W2000590798 cites W2168451461 @default.
- W2000590798 cites W2168806188 @default.
- W2000590798 cites W2170802700 @default.
- W2000590798 doi "https://doi.org/10.1016/j.camwa.2014.07.022" @default.
- W2000590798 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4190480" @default.
- W2000590798 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25309038" @default.
- W2000590798 hasPublicationYear "2014" @default.
- W2000590798 type Work @default.
- W2000590798 sameAs 2000590798 @default.
- W2000590798 citedByCount "16" @default.
- W2000590798 countsByYear W20005907982014 @default.
- W2000590798 countsByYear W20005907982015 @default.
- W2000590798 countsByYear W20005907982016 @default.
- W2000590798 countsByYear W20005907982017 @default.