Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000605727> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2000605727 abstract "Hyperspectral instruments acquire electromagnetic energy scattered within their ground instantaneous field view in hundreds of spectral channels with high spectral resolution. Very often, however, owing to low spatial resolution of the scanner or to the presence of intimate mixtures (mixing of the materials at a very small scale) in the scene, the spectral vectors (collection of signals acquired at different spectral bands from a given pixel) acquired by the hyperspectral scanners are actually mixtures of the spectral signatures of the materials present in the scene. Given a set of mixed spectral vectors, spectral mixture analysis (or spectral unmixing) aims at estimating the number of reference materials, also called endmembers, their spectral signatures, and their fractional abundances. Spectral unmixing is, thus, a source separation problem where, under a linear mixing model, the sources are the fractional abundances and the endmember spectral signatures are the columns of the mixing matrix. As such, the independent component analysis (ICA) framework came naturally to mind to unmix spectral data. However, the ICA crux assumption of source statistical independence is not satisfied in spectral applications, since the sources are fractions and, thus, non-negative and sum to one. As a consequence, ICA-based algorithms have severe limitations in the area of spectral unmixing, and this has fostered new unmixing research directions taking into account geometric and statistical characteristics of hyperspectral sources. This paper presents an overview of the principal research directions in hyperspectral unmixing. The presentations is organized into four main topics: i) mixing models, ii) signal subspace identification, iii) geometrical-based spectral unmixing, (iv) statistical-based spectral unmixing, and (v) sparse regression-based unmixing. In each topic, we describe what physical or mathematical problems are involved and summarize state-of-the-art algorithms to address these problems." @default.
- W2000605727 created "2016-06-24" @default.
- W2000605727 creator A5017508063 @default.
- W2000605727 creator A5054292278 @default.
- W2000605727 date "2010-10-07" @default.
- W2000605727 modified "2023-10-14" @default.
- W2000605727 title "Hyperspectral unmixing: geometrical, statistical, and sparse regression-based approaches" @default.
- W2000605727 doi "https://doi.org/10.1117/12.870780" @default.
- W2000605727 hasPublicationYear "2010" @default.
- W2000605727 type Work @default.
- W2000605727 sameAs 2000605727 @default.
- W2000605727 citedByCount "36" @default.
- W2000605727 countsByYear W20006057272012 @default.
- W2000605727 countsByYear W20006057272013 @default.
- W2000605727 countsByYear W20006057272014 @default.
- W2000605727 countsByYear W20006057272015 @default.
- W2000605727 countsByYear W20006057272016 @default.
- W2000605727 countsByYear W20006057272017 @default.
- W2000605727 countsByYear W20006057272018 @default.
- W2000605727 countsByYear W20006057272020 @default.
- W2000605727 crossrefType "proceedings-article" @default.
- W2000605727 hasAuthorship W2000605727A5017508063 @default.
- W2000605727 hasAuthorship W2000605727A5054292278 @default.
- W2000605727 hasBestOaLocation W20006057272 @default.
- W2000605727 hasConcept C120317606 @default.
- W2000605727 hasConcept C121332964 @default.
- W2000605727 hasConcept C124967146 @default.
- W2000605727 hasConcept C127162648 @default.
- W2000605727 hasConcept C127313418 @default.
- W2000605727 hasConcept C1276947 @default.
- W2000605727 hasConcept C138777275 @default.
- W2000605727 hasConcept C153180895 @default.
- W2000605727 hasConcept C154945302 @default.
- W2000605727 hasConcept C158479148 @default.
- W2000605727 hasConcept C159078339 @default.
- W2000605727 hasConcept C160633673 @default.
- W2000605727 hasConcept C176641082 @default.
- W2000605727 hasConcept C27438332 @default.
- W2000605727 hasConcept C31258907 @default.
- W2000605727 hasConcept C41008148 @default.
- W2000605727 hasConcept C4839761 @default.
- W2000605727 hasConcept C51432778 @default.
- W2000605727 hasConcept C58237817 @default.
- W2000605727 hasConcept C62520636 @default.
- W2000605727 hasConcept C62649853 @default.
- W2000605727 hasConcept C78660771 @default.
- W2000605727 hasConceptScore W2000605727C120317606 @default.
- W2000605727 hasConceptScore W2000605727C121332964 @default.
- W2000605727 hasConceptScore W2000605727C124967146 @default.
- W2000605727 hasConceptScore W2000605727C127162648 @default.
- W2000605727 hasConceptScore W2000605727C127313418 @default.
- W2000605727 hasConceptScore W2000605727C1276947 @default.
- W2000605727 hasConceptScore W2000605727C138777275 @default.
- W2000605727 hasConceptScore W2000605727C153180895 @default.
- W2000605727 hasConceptScore W2000605727C154945302 @default.
- W2000605727 hasConceptScore W2000605727C158479148 @default.
- W2000605727 hasConceptScore W2000605727C159078339 @default.
- W2000605727 hasConceptScore W2000605727C160633673 @default.
- W2000605727 hasConceptScore W2000605727C176641082 @default.
- W2000605727 hasConceptScore W2000605727C27438332 @default.
- W2000605727 hasConceptScore W2000605727C31258907 @default.
- W2000605727 hasConceptScore W2000605727C41008148 @default.
- W2000605727 hasConceptScore W2000605727C4839761 @default.
- W2000605727 hasConceptScore W2000605727C51432778 @default.
- W2000605727 hasConceptScore W2000605727C58237817 @default.
- W2000605727 hasConceptScore W2000605727C62520636 @default.
- W2000605727 hasConceptScore W2000605727C62649853 @default.
- W2000605727 hasConceptScore W2000605727C78660771 @default.
- W2000605727 hasLocation W20006057271 @default.
- W2000605727 hasLocation W20006057272 @default.
- W2000605727 hasOpenAccess W2000605727 @default.
- W2000605727 hasPrimaryLocation W20006057271 @default.
- W2000605727 hasRelatedWork W1970024035 @default.
- W2000605727 hasRelatedWork W199627392 @default.
- W2000605727 hasRelatedWork W1997778120 @default.
- W2000605727 hasRelatedWork W2000605727 @default.
- W2000605727 hasRelatedWork W2086636525 @default.
- W2000605727 hasRelatedWork W2553040330 @default.
- W2000605727 hasRelatedWork W2560525382 @default.
- W2000605727 hasRelatedWork W2963439143 @default.
- W2000605727 hasRelatedWork W2976811157 @default.
- W2000605727 hasRelatedWork W841292008 @default.
- W2000605727 isParatext "false" @default.
- W2000605727 isRetracted "false" @default.
- W2000605727 magId "2000605727" @default.
- W2000605727 workType "article" @default.