Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000622823> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2000622823 endingPage "320" @default.
- W2000622823 startingPage "305" @default.
- W2000622823 abstract "The class of lattices we are interested in (subprojective lattices), can be gotten by taking the MacNeille completions of the class of complemented, modular, atomic lattices. McLaughlin showed that subprojective lattices can be represented as the lattices of W-closed subspaces of a vector space U in duality with a vector space W. In this paper, we give a characterization of subprojective lattices in terms of atoms and dual atoms, by means of an incidence space satisfying self-dual axioms. In the finite-dimensional case, a subprojective lattice is projective, and hence our self-dual axioms characterize finite-dimensional projective spaces in terms of points and hyperplanes. No numerical parameters appear explicitly in these axioms. For each subprojective lattice L with at least three elements, we define a projective envelope P(L) for it. P(L) is a projective lattice and there is a natural inf-preserving injection of L into P(L). This injection has other important properties which we take as the definition of a geometric map. In the course of studying geometric maps, we obtain a lattice theoretic proof of Mackey's result that the join of a U-closed subspace of V and a finite-dimensional subspace is U-closed, where (U, V) form a dual pair of vector spaces over a division ring. Furthermore, we show that if L is a subprojective lattice, P a projective lattice, and ψ: L → P a geometric map, then P is isomorphic to the projective envelope P(L) of L. The paper presents many other properties of subprojective lattices. It concludes with a characterization of subprojective lattices which are also projective." @default.
- W2000622823 created "2016-06-24" @default.
- W2000622823 creator A5058534372 @default.
- W2000622823 creator A5077063883 @default.
- W2000622823 date "1977-10-01" @default.
- W2000622823 modified "2023-10-05" @default.
- W2000622823 title "Subprojective lattices and projective geometry" @default.
- W2000622823 cites W1998555372 @default.
- W2000622823 cites W2002015943 @default.
- W2000622823 cites W2075620087 @default.
- W2000622823 cites W2084680653 @default.
- W2000622823 cites W2090243899 @default.
- W2000622823 cites W2093235211 @default.
- W2000622823 cites W2319469796 @default.
- W2000622823 cites W2330914254 @default.
- W2000622823 cites W2488386870 @default.
- W2000622823 cites W2506049836 @default.
- W2000622823 cites W599390456 @default.
- W2000622823 doi "https://doi.org/10.1016/0021-8693(77)90309-x" @default.
- W2000622823 hasPublicationYear "1977" @default.
- W2000622823 type Work @default.
- W2000622823 sameAs 2000622823 @default.
- W2000622823 citedByCount "5" @default.
- W2000622823 crossrefType "journal-article" @default.
- W2000622823 hasAuthorship W2000622823A5058534372 @default.
- W2000622823 hasAuthorship W2000622823A5077063883 @default.
- W2000622823 hasConcept C114614502 @default.
- W2000622823 hasConcept C118615104 @default.
- W2000622823 hasConcept C121332964 @default.
- W2000622823 hasConcept C12362212 @default.
- W2000622823 hasConcept C132702353 @default.
- W2000622823 hasConcept C13336665 @default.
- W2000622823 hasConcept C134306372 @default.
- W2000622823 hasConcept C177846678 @default.
- W2000622823 hasConcept C185362025 @default.
- W2000622823 hasConcept C202444582 @default.
- W2000622823 hasConcept C24890656 @default.
- W2000622823 hasConcept C2778023678 @default.
- W2000622823 hasConcept C2781204021 @default.
- W2000622823 hasConcept C32834561 @default.
- W2000622823 hasConcept C33923547 @default.
- W2000622823 hasConcept C68363185 @default.
- W2000622823 hasConcept C68693459 @default.
- W2000622823 hasConcept C75280867 @default.
- W2000622823 hasConcept C84407019 @default.
- W2000622823 hasConceptScore W2000622823C114614502 @default.
- W2000622823 hasConceptScore W2000622823C118615104 @default.
- W2000622823 hasConceptScore W2000622823C121332964 @default.
- W2000622823 hasConceptScore W2000622823C12362212 @default.
- W2000622823 hasConceptScore W2000622823C132702353 @default.
- W2000622823 hasConceptScore W2000622823C13336665 @default.
- W2000622823 hasConceptScore W2000622823C134306372 @default.
- W2000622823 hasConceptScore W2000622823C177846678 @default.
- W2000622823 hasConceptScore W2000622823C185362025 @default.
- W2000622823 hasConceptScore W2000622823C202444582 @default.
- W2000622823 hasConceptScore W2000622823C24890656 @default.
- W2000622823 hasConceptScore W2000622823C2778023678 @default.
- W2000622823 hasConceptScore W2000622823C2781204021 @default.
- W2000622823 hasConceptScore W2000622823C32834561 @default.
- W2000622823 hasConceptScore W2000622823C33923547 @default.
- W2000622823 hasConceptScore W2000622823C68363185 @default.
- W2000622823 hasConceptScore W2000622823C68693459 @default.
- W2000622823 hasConceptScore W2000622823C75280867 @default.
- W2000622823 hasConceptScore W2000622823C84407019 @default.
- W2000622823 hasIssue "2" @default.
- W2000622823 hasLocation W20006228231 @default.
- W2000622823 hasOpenAccess W2000622823 @default.
- W2000622823 hasPrimaryLocation W20006228231 @default.
- W2000622823 hasRelatedWork W1553074690 @default.
- W2000622823 hasRelatedWork W2000622823 @default.
- W2000622823 hasRelatedWork W2010256426 @default.
- W2000622823 hasRelatedWork W2015277901 @default.
- W2000622823 hasRelatedWork W2053779199 @default.
- W2000622823 hasRelatedWork W2054311643 @default.
- W2000622823 hasRelatedWork W2067990489 @default.
- W2000622823 hasRelatedWork W2995969991 @default.
- W2000622823 hasRelatedWork W3104164025 @default.
- W2000622823 hasRelatedWork W776110092 @default.
- W2000622823 hasVolume "48" @default.
- W2000622823 isParatext "false" @default.
- W2000622823 isRetracted "false" @default.
- W2000622823 magId "2000622823" @default.
- W2000622823 workType "article" @default.