Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000672192> ?p ?o ?g. }
- W2000672192 endingPage "e68196" @default.
- W2000672192 startingPage "e68196" @default.
- W2000672192 abstract "Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data." @default.
- W2000672192 created "2016-06-24" @default.
- W2000672192 creator A5017510977 @default.
- W2000672192 creator A5038501763 @default.
- W2000672192 creator A5049568556 @default.
- W2000672192 creator A5054895816 @default.
- W2000672192 creator A5059417641 @default.
- W2000672192 creator A5085380763 @default.
- W2000672192 creator A5087193848 @default.
- W2000672192 date "2013-07-17" @default.
- W2000672192 modified "2023-09-27" @default.
- W2000672192 title "Fully Bayesian Inference for Structural MRI: Application to Segmentation and Statistical Analysis of T2-Hypointensities" @default.
- W2000672192 cites W130037070 @default.
- W2000672192 cites W143236119 @default.
- W2000672192 cites W1541580970 @default.
- W2000672192 cites W188367262 @default.
- W2000672192 cites W1967922486 @default.
- W2000672192 cites W1981234845 @default.
- W2000672192 cites W1981457167 @default.
- W2000672192 cites W1981835221 @default.
- W2000672192 cites W1983675419 @default.
- W2000672192 cites W1987433365 @default.
- W2000672192 cites W1987869189 @default.
- W2000672192 cites W1991237518 @default.
- W2000672192 cites W2010605130 @default.
- W2000672192 cites W2016634887 @default.
- W2000672192 cites W2019035911 @default.
- W2000672192 cites W2038241450 @default.
- W2000672192 cites W2040011853 @default.
- W2000672192 cites W2046807932 @default.
- W2000672192 cites W2085410009 @default.
- W2000672192 cites W2085829822 @default.
- W2000672192 cites W2087101057 @default.
- W2000672192 cites W2093538953 @default.
- W2000672192 cites W2099801199 @default.
- W2000672192 cites W2102848905 @default.
- W2000672192 cites W2113283292 @default.
- W2000672192 cites W2115450036 @default.
- W2000672192 cites W2116649573 @default.
- W2000672192 cites W2119047368 @default.
- W2000672192 cites W2125441754 @default.
- W2000672192 cites W2132513126 @default.
- W2000672192 cites W2138266733 @default.
- W2000672192 cites W2148534890 @default.
- W2000672192 cites W2151698924 @default.
- W2000672192 cites W2152276235 @default.
- W2000672192 cites W2155298532 @default.
- W2000672192 cites W2159965356 @default.
- W2000672192 cites W3121567163 @default.
- W2000672192 cites W4232383088 @default.
- W2000672192 doi "https://doi.org/10.1371/journal.pone.0068196" @default.
- W2000672192 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3714280" @default.
- W2000672192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23874537" @default.
- W2000672192 hasPublicationYear "2013" @default.
- W2000672192 type Work @default.
- W2000672192 sameAs 2000672192 @default.
- W2000672192 citedByCount "6" @default.
- W2000672192 countsByYear W20006721922014 @default.
- W2000672192 countsByYear W20006721922015 @default.
- W2000672192 countsByYear W20006721922017 @default.
- W2000672192 countsByYear W20006721922018 @default.
- W2000672192 countsByYear W20006721922023 @default.
- W2000672192 crossrefType "journal-article" @default.
- W2000672192 hasAuthorship W2000672192A5017510977 @default.
- W2000672192 hasAuthorship W2000672192A5038501763 @default.
- W2000672192 hasAuthorship W2000672192A5049568556 @default.
- W2000672192 hasAuthorship W2000672192A5054895816 @default.
- W2000672192 hasAuthorship W2000672192A5059417641 @default.
- W2000672192 hasAuthorship W2000672192A5085380763 @default.
- W2000672192 hasAuthorship W2000672192A5087193848 @default.
- W2000672192 hasBestOaLocation W20006721921 @default.
- W2000672192 hasConcept C105795698 @default.
- W2000672192 hasConcept C107673813 @default.
- W2000672192 hasConcept C111350023 @default.
- W2000672192 hasConcept C114289077 @default.
- W2000672192 hasConcept C134261354 @default.
- W2000672192 hasConcept C153180895 @default.
- W2000672192 hasConcept C154945302 @default.
- W2000672192 hasConcept C160234255 @default.
- W2000672192 hasConcept C177769412 @default.
- W2000672192 hasConcept C33923547 @default.
- W2000672192 hasConcept C37903108 @default.
- W2000672192 hasConcept C41008148 @default.
- W2000672192 hasConcept C57830394 @default.
- W2000672192 hasConcept C89600930 @default.
- W2000672192 hasConceptScore W2000672192C105795698 @default.
- W2000672192 hasConceptScore W2000672192C107673813 @default.
- W2000672192 hasConceptScore W2000672192C111350023 @default.
- W2000672192 hasConceptScore W2000672192C114289077 @default.
- W2000672192 hasConceptScore W2000672192C134261354 @default.
- W2000672192 hasConceptScore W2000672192C153180895 @default.
- W2000672192 hasConceptScore W2000672192C154945302 @default.
- W2000672192 hasConceptScore W2000672192C160234255 @default.
- W2000672192 hasConceptScore W2000672192C177769412 @default.
- W2000672192 hasConceptScore W2000672192C33923547 @default.
- W2000672192 hasConceptScore W2000672192C37903108 @default.
- W2000672192 hasConceptScore W2000672192C41008148 @default.
- W2000672192 hasConceptScore W2000672192C57830394 @default.