Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000680454> ?p ?o ?g. }
- W2000680454 endingPage "683" @default.
- W2000680454 startingPage "662" @default.
- W2000680454 abstract "Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling. In addition, high-speed images of single droplets of fuel impinging onto the array of the heat flux sensor were acquired with simultaneous sampling of the heat flux signal in an attempt to provide further interpretation. The single droplet tests showed ability of the signals to quantify droplet mass impinged on the sensor. Analysis of the peak heat flux at static engine conditions quantified values of fuel temperature at impingement in agreement with the wet bulb temperatures predicted by the droplet evaporation model. Comparison of the static and motoring engine heat flux signals around the bore showed the effect of the intake flow on the spray’s pattern at impingement and demonstrated fuel presence on the liner that survived at exhaust valve open timing. The general behaviour was different for the alcohols to that of the hydrocarbons, with ethanol exhibiting the effect of its high latent heat on the signals and butanol exhibiting effects related to poor atomization and slow evaporation." @default.
- W2000680454 created "2016-06-24" @default.
- W2000680454 creator A5001262738 @default.
- W2000680454 creator A5025533242 @default.
- W2000680454 creator A5046827209 @default.
- W2000680454 creator A5057779972 @default.
- W2000680454 creator A5071956906 @default.
- W2000680454 date "2013-12-01" @default.
- W2000680454 modified "2023-10-14" @default.
- W2000680454 title "Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels" @default.
- W2000680454 cites W1482905315 @default.
- W2000680454 cites W1509780225 @default.
- W2000680454 cites W1513205499 @default.
- W2000680454 cites W1572910344 @default.
- W2000680454 cites W1593643843 @default.
- W2000680454 cites W1597512807 @default.
- W2000680454 cites W1599543911 @default.
- W2000680454 cites W1639037107 @default.
- W2000680454 cites W1763658721 @default.
- W2000680454 cites W1968687498 @default.
- W2000680454 cites W1976257806 @default.
- W2000680454 cites W1982042401 @default.
- W2000680454 cites W1984395645 @default.
- W2000680454 cites W2047450003 @default.
- W2000680454 cites W2051056018 @default.
- W2000680454 cites W2051607880 @default.
- W2000680454 cites W2061523247 @default.
- W2000680454 cites W2066487539 @default.
- W2000680454 cites W2069043571 @default.
- W2000680454 cites W2096841962 @default.
- W2000680454 cites W2130665129 @default.
- W2000680454 cites W2142718866 @default.
- W2000680454 cites W2231203978 @default.
- W2000680454 cites W2252897106 @default.
- W2000680454 cites W2270838155 @default.
- W2000680454 cites W2271560246 @default.
- W2000680454 cites W2278715149 @default.
- W2000680454 cites W2291371636 @default.
- W2000680454 cites W2311243603 @default.
- W2000680454 cites W3023789798 @default.
- W2000680454 doi "https://doi.org/10.1016/j.ijheatfluidflow.2013.09.010" @default.
- W2000680454 hasPublicationYear "2013" @default.
- W2000680454 type Work @default.
- W2000680454 sameAs 2000680454 @default.
- W2000680454 citedByCount "40" @default.
- W2000680454 countsByYear W20006804542014 @default.
- W2000680454 countsByYear W20006804542015 @default.
- W2000680454 countsByYear W20006804542016 @default.
- W2000680454 countsByYear W20006804542017 @default.
- W2000680454 countsByYear W20006804542018 @default.
- W2000680454 countsByYear W20006804542019 @default.
- W2000680454 countsByYear W20006804542020 @default.
- W2000680454 countsByYear W20006804542021 @default.
- W2000680454 countsByYear W20006804542022 @default.
- W2000680454 countsByYear W20006804542023 @default.
- W2000680454 crossrefType "journal-article" @default.
- W2000680454 hasAuthorship W2000680454A5001262738 @default.
- W2000680454 hasAuthorship W2000680454A5025533242 @default.
- W2000680454 hasAuthorship W2000680454A5046827209 @default.
- W2000680454 hasAuthorship W2000680454A5057779972 @default.
- W2000680454 hasAuthorship W2000680454A5071956906 @default.
- W2000680454 hasBestOaLocation W20006804542 @default.
- W2000680454 hasConcept C103206924 @default.
- W2000680454 hasConcept C103697071 @default.
- W2000680454 hasConcept C105923489 @default.
- W2000680454 hasConcept C116705413 @default.
- W2000680454 hasConcept C121332964 @default.
- W2000680454 hasConcept C127413603 @default.
- W2000680454 hasConcept C135186712 @default.
- W2000680454 hasConcept C159063594 @default.
- W2000680454 hasConcept C159188206 @default.
- W2000680454 hasConcept C163721339 @default.
- W2000680454 hasConcept C171146098 @default.
- W2000680454 hasConcept C178790620 @default.
- W2000680454 hasConcept C185592680 @default.
- W2000680454 hasConcept C190894226 @default.
- W2000680454 hasConcept C192562407 @default.
- W2000680454 hasConcept C203311528 @default.
- W2000680454 hasConcept C2777703250 @default.
- W2000680454 hasConcept C2779985886 @default.
- W2000680454 hasConcept C39432304 @default.
- W2000680454 hasConcept C50517652 @default.
- W2000680454 hasConcept C511840579 @default.
- W2000680454 hasConcept C56200935 @default.
- W2000680454 hasConcept C57879066 @default.
- W2000680454 hasConcept C78519656 @default.
- W2000680454 hasConcept C91337280 @default.
- W2000680454 hasConcept C9526370 @default.
- W2000680454 hasConcept C97355855 @default.
- W2000680454 hasConceptScore W2000680454C103206924 @default.
- W2000680454 hasConceptScore W2000680454C103697071 @default.
- W2000680454 hasConceptScore W2000680454C105923489 @default.
- W2000680454 hasConceptScore W2000680454C116705413 @default.
- W2000680454 hasConceptScore W2000680454C121332964 @default.
- W2000680454 hasConceptScore W2000680454C127413603 @default.
- W2000680454 hasConceptScore W2000680454C135186712 @default.
- W2000680454 hasConceptScore W2000680454C159063594 @default.
- W2000680454 hasConceptScore W2000680454C159188206 @default.