Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000690503> ?p ?o ?g. }
- W2000690503 abstract "Purpose: The treatment of ventral hernias (VH) has been a challenging problem for medical care. Repair of these hernias is fraught with failure; recurrence rates ranging from 24% to 43% have been reported, even with the use of biocompatible mesh. Currently, computed tomography (CT) is used to guide intervention through expert, but qualitative, clinical judgments, notably, quantitative metrics based on image‐processing are not used. The authors propose that image segmentation methods to capture the three‐dimensional structure of the abdominal wall and its abnormalities will provide a foundation on which to measure geometric properties of hernias and surrounding tissues and, therefore, to optimize intervention. Methods: In this study with 20 clinically acquired CT scans on postoperative patients, the authors demonstrated a novel approach to geometric classification of the abdominal. The authors’ approach uses a texture analysis based on Gabor filters to extract feature vectors and follows a fuzzy c‐means clustering method to estimate voxelwise probability memberships for eight clusters. The memberships estimated from the texture analysis are helpful to identify anatomical structures with inhomogeneous intensities. The membership was used to guide the level set evolution, as well as to derive an initial start close to the abdominal wall. Results: Segmentation results on abdominal walls were both quantitatively and qualitatively validated with surface errors based on manually labeled ground truth. Using texture, mean surface errors for the outer surface of the abdominal wall were less than 2 mm, with 91% of the outer surface less than 5 mm away from the manual tracings; errors were significantly greater (2–5 mm) for methods that did not use the texture. Conclusions: The authors’ approach establishes a baseline for characterizing the abdominal wall for improving VH care. Inherent texture patterns in CT scans are helpful to the tissue classification, and texture analysis can improve the level set segmentation around the abdominal region." @default.
- W2000690503 created "2016-06-24" @default.
- W2000690503 creator A5004320806 @default.
- W2000690503 creator A5011139557 @default.
- W2000690503 creator A5013501856 @default.
- W2000690503 creator A5075735203 @default.
- W2000690503 creator A5083377585 @default.
- W2000690503 date "2013-11-06" @default.
- W2000690503 modified "2023-10-18" @default.
- W2000690503 title "Texture analysis improves level set segmentation of the anterior abdominal wall" @default.
- W2000690503 cites W1499486838 @default.
- W2000690503 cites W1974384139 @default.
- W2000690503 cites W1978238148 @default.
- W2000690503 cites W1981339887 @default.
- W2000690503 cites W2016482013 @default.
- W2000690503 cites W2023485724 @default.
- W2000690503 cites W2093834886 @default.
- W2000690503 cites W2096201928 @default.
- W2000690503 cites W2098986677 @default.
- W2000690503 cites W2099046646 @default.
- W2000690503 cites W2108077184 @default.
- W2000690503 cites W2109011174 @default.
- W2000690503 cites W2114766326 @default.
- W2000690503 cites W2117473179 @default.
- W2000690503 cites W2119412335 @default.
- W2000690503 cites W2126440645 @default.
- W2000690503 cites W2139478903 @default.
- W2000690503 cites W2144133758 @default.
- W2000690503 cites W2149184914 @default.
- W2000690503 cites W2168062671 @default.
- W2000690503 cites W2171181782 @default.
- W2000690503 cites W3211330693 @default.
- W2000690503 cites W4255747608 @default.
- W2000690503 cites W586552007 @default.
- W2000690503 cites W783453938 @default.
- W2000690503 doi "https://doi.org/10.1118/1.4828791" @default.
- W2000690503 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3838426" @default.
- W2000690503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24320512" @default.
- W2000690503 hasPublicationYear "2013" @default.
- W2000690503 type Work @default.
- W2000690503 sameAs 2000690503 @default.
- W2000690503 citedByCount "10" @default.
- W2000690503 countsByYear W20006905032014 @default.
- W2000690503 countsByYear W20006905032015 @default.
- W2000690503 countsByYear W20006905032016 @default.
- W2000690503 countsByYear W20006905032018 @default.
- W2000690503 countsByYear W20006905032023 @default.
- W2000690503 crossrefType "journal-article" @default.
- W2000690503 hasAuthorship W2000690503A5004320806 @default.
- W2000690503 hasAuthorship W2000690503A5011139557 @default.
- W2000690503 hasAuthorship W2000690503A5013501856 @default.
- W2000690503 hasAuthorship W2000690503A5075735203 @default.
- W2000690503 hasAuthorship W2000690503A5083377585 @default.
- W2000690503 hasBestOaLocation W20006905032 @default.
- W2000690503 hasConcept C115961682 @default.
- W2000690503 hasConcept C124504099 @default.
- W2000690503 hasConcept C126838900 @default.
- W2000690503 hasConcept C138885662 @default.
- W2000690503 hasConcept C141071460 @default.
- W2000690503 hasConcept C146849305 @default.
- W2000690503 hasConcept C153008295 @default.
- W2000690503 hasConcept C153180895 @default.
- W2000690503 hasConcept C154945302 @default.
- W2000690503 hasConcept C2776401178 @default.
- W2000690503 hasConcept C2778754067 @default.
- W2000690503 hasConcept C2781195486 @default.
- W2000690503 hasConcept C31601959 @default.
- W2000690503 hasConcept C31972630 @default.
- W2000690503 hasConcept C41008148 @default.
- W2000690503 hasConcept C41895202 @default.
- W2000690503 hasConcept C42011625 @default.
- W2000690503 hasConcept C544519230 @default.
- W2000690503 hasConcept C58166 @default.
- W2000690503 hasConcept C71924100 @default.
- W2000690503 hasConcept C73555534 @default.
- W2000690503 hasConcept C89600930 @default.
- W2000690503 hasConceptScore W2000690503C115961682 @default.
- W2000690503 hasConceptScore W2000690503C124504099 @default.
- W2000690503 hasConceptScore W2000690503C126838900 @default.
- W2000690503 hasConceptScore W2000690503C138885662 @default.
- W2000690503 hasConceptScore W2000690503C141071460 @default.
- W2000690503 hasConceptScore W2000690503C146849305 @default.
- W2000690503 hasConceptScore W2000690503C153008295 @default.
- W2000690503 hasConceptScore W2000690503C153180895 @default.
- W2000690503 hasConceptScore W2000690503C154945302 @default.
- W2000690503 hasConceptScore W2000690503C2776401178 @default.
- W2000690503 hasConceptScore W2000690503C2778754067 @default.
- W2000690503 hasConceptScore W2000690503C2781195486 @default.
- W2000690503 hasConceptScore W2000690503C31601959 @default.
- W2000690503 hasConceptScore W2000690503C31972630 @default.
- W2000690503 hasConceptScore W2000690503C41008148 @default.
- W2000690503 hasConceptScore W2000690503C41895202 @default.
- W2000690503 hasConceptScore W2000690503C42011625 @default.
- W2000690503 hasConceptScore W2000690503C544519230 @default.
- W2000690503 hasConceptScore W2000690503C58166 @default.
- W2000690503 hasConceptScore W2000690503C71924100 @default.
- W2000690503 hasConceptScore W2000690503C73555534 @default.
- W2000690503 hasConceptScore W2000690503C89600930 @default.
- W2000690503 hasFunder F4320332161 @default.
- W2000690503 hasIssue "12" @default.