Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000693185> ?p ?o ?g. }
- W2000693185 endingPage "3174" @default.
- W2000693185 startingPage "3162" @default.
- W2000693185 abstract "We introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D $Ntimes N times N$ grid with the computational requirements only emph{weakly dependent} on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over $Ltimes L times L$ lattice embedded in a box the required storage scales linearly in the 1D grid-size, $O(N )$, while the numerical cost is estimated by $O(N L)$. For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, $n=N/L$, while the numerical cost reduces to $O(N)$, that outperforms the FFT-based Ewald-type summation algorithms of complexity $O(N^3 log N)$. The complexity in the grid parameter $N$ can be reduced even to the logarithmic scale $O(log N)$ by using data-sparse representation of canonical $N$-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks." @default.
- W2000693185 created "2016-06-24" @default.
- W2000693185 creator A5043445843 @default.
- W2000693185 creator A5075951197 @default.
- W2000693185 date "2014-12-01" @default.
- W2000693185 modified "2023-09-23" @default.
- W2000693185 title "Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation" @default.
- W2000693185 cites W1963495301 @default.
- W2000693185 cites W1963973528 @default.
- W2000693185 cites W1964163189 @default.
- W2000693185 cites W1965495673 @default.
- W2000693185 cites W1967807484 @default.
- W2000693185 cites W1967859589 @default.
- W2000693185 cites W1973224679 @default.
- W2000693185 cites W1975720704 @default.
- W2000693185 cites W1981045787 @default.
- W2000693185 cites W1981313871 @default.
- W2000693185 cites W1989786408 @default.
- W2000693185 cites W1992076681 @default.
- W2000693185 cites W1993482030 @default.
- W2000693185 cites W2000493207 @default.
- W2000693185 cites W2001676859 @default.
- W2000693185 cites W2008111652 @default.
- W2000693185 cites W2016407890 @default.
- W2000693185 cites W2019339109 @default.
- W2000693185 cites W2020320699 @default.
- W2000693185 cites W2022635315 @default.
- W2000693185 cites W2024165284 @default.
- W2000693185 cites W2024938971 @default.
- W2000693185 cites W2028247581 @default.
- W2000693185 cites W2029072453 @default.
- W2000693185 cites W2037003422 @default.
- W2000693185 cites W2042308234 @default.
- W2000693185 cites W2043744008 @default.
- W2000693185 cites W2047064406 @default.
- W2000693185 cites W2058907802 @default.
- W2000693185 cites W2059875127 @default.
- W2000693185 cites W2061686925 @default.
- W2000693185 cites W2067174909 @default.
- W2000693185 cites W2083206954 @default.
- W2000693185 cites W2084074491 @default.
- W2000693185 cites W2088837947 @default.
- W2000693185 cites W3098444613 @default.
- W2000693185 doi "https://doi.org/10.1016/j.cpc.2014.08.015" @default.
- W2000693185 hasPublicationYear "2014" @default.
- W2000693185 type Work @default.
- W2000693185 sameAs 2000693185 @default.
- W2000693185 citedByCount "37" @default.
- W2000693185 countsByYear W20006931852014 @default.
- W2000693185 countsByYear W20006931852015 @default.
- W2000693185 countsByYear W20006931852016 @default.
- W2000693185 countsByYear W20006931852017 @default.
- W2000693185 countsByYear W20006931852018 @default.
- W2000693185 countsByYear W20006931852019 @default.
- W2000693185 countsByYear W20006931852020 @default.
- W2000693185 countsByYear W20006931852021 @default.
- W2000693185 countsByYear W20006931852022 @default.
- W2000693185 crossrefType "journal-article" @default.
- W2000693185 hasAuthorship W2000693185A5043445843 @default.
- W2000693185 hasAuthorship W2000693185A5075951197 @default.
- W2000693185 hasBestOaLocation W20006931852 @default.
- W2000693185 hasConcept C112675119 @default.
- W2000693185 hasConcept C114614502 @default.
- W2000693185 hasConcept C121332964 @default.
- W2000693185 hasConcept C134306372 @default.
- W2000693185 hasConcept C143551052 @default.
- W2000693185 hasConcept C155281189 @default.
- W2000693185 hasConcept C182310444 @default.
- W2000693185 hasConcept C187691185 @default.
- W2000693185 hasConcept C202444582 @default.
- W2000693185 hasConcept C24890656 @default.
- W2000693185 hasConcept C2524010 @default.
- W2000693185 hasConcept C2777984123 @default.
- W2000693185 hasConcept C2781204021 @default.
- W2000693185 hasConcept C33923547 @default.
- W2000693185 hasConcept C39927690 @default.
- W2000693185 hasConcept C51255310 @default.
- W2000693185 hasConcept C57691317 @default.
- W2000693185 hasConcept C59593255 @default.
- W2000693185 hasConcept C62520636 @default.
- W2000693185 hasConceptScore W2000693185C112675119 @default.
- W2000693185 hasConceptScore W2000693185C114614502 @default.
- W2000693185 hasConceptScore W2000693185C121332964 @default.
- W2000693185 hasConceptScore W2000693185C134306372 @default.
- W2000693185 hasConceptScore W2000693185C143551052 @default.
- W2000693185 hasConceptScore W2000693185C155281189 @default.
- W2000693185 hasConceptScore W2000693185C182310444 @default.
- W2000693185 hasConceptScore W2000693185C187691185 @default.
- W2000693185 hasConceptScore W2000693185C202444582 @default.
- W2000693185 hasConceptScore W2000693185C24890656 @default.
- W2000693185 hasConceptScore W2000693185C2524010 @default.
- W2000693185 hasConceptScore W2000693185C2777984123 @default.
- W2000693185 hasConceptScore W2000693185C2781204021 @default.
- W2000693185 hasConceptScore W2000693185C33923547 @default.
- W2000693185 hasConceptScore W2000693185C39927690 @default.
- W2000693185 hasConceptScore W2000693185C51255310 @default.
- W2000693185 hasConceptScore W2000693185C57691317 @default.
- W2000693185 hasConceptScore W2000693185C59593255 @default.