Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000700114> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2000700114 endingPage "510" @default.
- W2000700114 startingPage "487" @default.
- W2000700114 abstract "Because of the unavoidable use of numerical integration methods, such as Runge--Kutta or finite elements, the numerical solution of optimal control problems, with either ODE or PDE dynamics, is governed by a discretization parameter such as the integration mesh-size. Usually, when explicit integration techniques are used, function and derivative values can be computed exactly for the discretized problems. Recently, we have come across some examples where function and derivative values of the explicitly discretized problems had to be approximated by the outcome of N iterations of a solver. Consequently, the discretization of these problems is controlled by two parameters: the mesh-size and the number of iterations of the solver. Referring to [E. Polak, Optimization: Algorithms and Consistent Approximations, Springer-Verlag, 1997], we find a theory for solving optimization problems that require discretization. It deals with two situations. In the first, which is referred to as that of consistent approximations, it is assumed that an infinite dimensional optimization problem can be suitably approximated by a family of progressively higher dimensional optimization problems. In this case, strategies, in the form of algorithm models, are presented for diagonalizing the solution process. In the second situation, it is assumed that numerical solution of the dynamic equations does not result in a family of finite dimensional consistent approximations (e.g., when implicit integration methods are used). For this case, the theory provides models for the implementation of conceptual algorithms. Unfortunately, neither of these situations envisions the possibility of two discretization parameters. In this paper, we present new algorithm models that can be used with two discretization parameters. The first one controls the mesh-size of an explicit integration scheme, and the second one controls the precision with which functions and gradients associated with a fixed mesh-size are computed. The result can be seen as a framework of quasi-consistent approximations. We implemented these new algorithm models using an approximate steepest descent method for the solution of two problems: a two-point boundary value problem in which the discretized linear ODE dynamics are solved approximately using the Gauss--Seidel method and a distributed control problem in which the discretized dynamics are solved using a domain decomposition algorithm which can be implemented on parallelized computers. Our numerical results show that these new algorithms perform quite well and are fairly insensitive to the selection of user-set parameters. Also, they appear to be superior to some alternative, ad hoc schemes." @default.
- W2000700114 created "2016-06-24" @default.
- W2000700114 creator A5017020195 @default.
- W2000700114 creator A5060781558 @default.
- W2000700114 date "2002-01-01" @default.
- W2000700114 modified "2023-09-23" @default.
- W2000700114 title "Consistent Approximations and Approximate Functions and Gradients in Optimal Control" @default.
- W2000700114 cites W146697093 @default.
- W2000700114 cites W1976008995 @default.
- W2000700114 cites W1984605095 @default.
- W2000700114 cites W2001611717 @default.
- W2000700114 cites W2018333764 @default.
- W2000700114 cites W2024702694 @default.
- W2000700114 cites W2037128090 @default.
- W2000700114 cites W2043728417 @default.
- W2000700114 cites W2051373638 @default.
- W2000700114 cites W2060279602 @default.
- W2000700114 cites W2070630896 @default.
- W2000700114 cites W2083365247 @default.
- W2000700114 cites W2093581986 @default.
- W2000700114 cites W2159336103 @default.
- W2000700114 cites W2165002617 @default.
- W2000700114 cites W4249513058 @default.
- W2000700114 doi "https://doi.org/10.1137/s0363012900369599" @default.
- W2000700114 hasPublicationYear "2002" @default.
- W2000700114 type Work @default.
- W2000700114 sameAs 2000700114 @default.
- W2000700114 citedByCount "24" @default.
- W2000700114 countsByYear W20007001142012 @default.
- W2000700114 countsByYear W20007001142013 @default.
- W2000700114 countsByYear W20007001142014 @default.
- W2000700114 countsByYear W20007001142017 @default.
- W2000700114 countsByYear W20007001142021 @default.
- W2000700114 crossrefType "journal-article" @default.
- W2000700114 hasAuthorship W2000700114A5017020195 @default.
- W2000700114 hasAuthorship W2000700114A5060781558 @default.
- W2000700114 hasConcept C105427703 @default.
- W2000700114 hasConcept C126148662 @default.
- W2000700114 hasConcept C126255220 @default.
- W2000700114 hasConcept C127349201 @default.
- W2000700114 hasConcept C134306372 @default.
- W2000700114 hasConcept C137836250 @default.
- W2000700114 hasConcept C14036430 @default.
- W2000700114 hasConcept C2778770139 @default.
- W2000700114 hasConcept C28826006 @default.
- W2000700114 hasConcept C33923547 @default.
- W2000700114 hasConcept C34862557 @default.
- W2000700114 hasConcept C73000952 @default.
- W2000700114 hasConcept C78458016 @default.
- W2000700114 hasConcept C86803240 @default.
- W2000700114 hasConcept C91575142 @default.
- W2000700114 hasConceptScore W2000700114C105427703 @default.
- W2000700114 hasConceptScore W2000700114C126148662 @default.
- W2000700114 hasConceptScore W2000700114C126255220 @default.
- W2000700114 hasConceptScore W2000700114C127349201 @default.
- W2000700114 hasConceptScore W2000700114C134306372 @default.
- W2000700114 hasConceptScore W2000700114C137836250 @default.
- W2000700114 hasConceptScore W2000700114C14036430 @default.
- W2000700114 hasConceptScore W2000700114C2778770139 @default.
- W2000700114 hasConceptScore W2000700114C28826006 @default.
- W2000700114 hasConceptScore W2000700114C33923547 @default.
- W2000700114 hasConceptScore W2000700114C34862557 @default.
- W2000700114 hasConceptScore W2000700114C73000952 @default.
- W2000700114 hasConceptScore W2000700114C78458016 @default.
- W2000700114 hasConceptScore W2000700114C86803240 @default.
- W2000700114 hasConceptScore W2000700114C91575142 @default.
- W2000700114 hasIssue "2" @default.
- W2000700114 hasLocation W20007001141 @default.
- W2000700114 hasOpenAccess W2000700114 @default.
- W2000700114 hasPrimaryLocation W20007001141 @default.
- W2000700114 hasRelatedWork W2008621392 @default.
- W2000700114 hasRelatedWork W2012186120 @default.
- W2000700114 hasRelatedWork W2046637502 @default.
- W2000700114 hasRelatedWork W2065595881 @default.
- W2000700114 hasRelatedWork W2100670034 @default.
- W2000700114 hasRelatedWork W2787514335 @default.
- W2000700114 hasRelatedWork W2952649113 @default.
- W2000700114 hasRelatedWork W2974753373 @default.
- W2000700114 hasRelatedWork W3005204046 @default.
- W2000700114 hasRelatedWork W4289097782 @default.
- W2000700114 hasVolume "41" @default.
- W2000700114 isParatext "false" @default.
- W2000700114 isRetracted "false" @default.
- W2000700114 magId "2000700114" @default.
- W2000700114 workType "article" @default.