Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000707950> ?p ?o ?g. }
- W2000707950 endingPage "5394" @default.
- W2000707950 startingPage "5387" @default.
- W2000707950 abstract "Advanced water treatment of secondary treated effluent requires stringent quality control to achieve a water quality suitable for augmenting drinking water supplies. The removal of micropollutants such as pesticides, industrial chemicals, endocrine disrupting chemicals (EDC), pharmaceuticals, and personal care products (PPCP) is paramount. As the concentrations of individual contaminants are typically low, frequent analytical screening is both laborious and costly. We propose and validate an approach for continuous monitoring by applying passive sampling with Empore disks in vessels that were designed to slow down the water flow, and thus uptake kinetics, and ensure that the uptake is only marginally dependent on the chemicals' physicochemical properties over a relatively narrow molecular size range. This design not only assured integrative sampling over 27 days for a broad range of chemicals but also permitted the use of a suite of bioanalytical tools as sum parameters, representative of mixtures of chemicals with a common mode of toxic action. Bioassays proved to be more sensitive than chemical analysis to assess the removal of organic micropollutants by reverse osmosis, followed by UV/H₂O₂ treatment, as many individual compounds fell below the quantification limit of chemical analysis, yet still contributed to the observed mixture toxicity. Nonetheless in several cases, the responses in the bioassays were also below their quantification limits and therefore only three bioassays were evaluated here, representing nonspecific toxicity and two specific end points for estrogenicity and photosynthesis inhibition. Chemical analytical techniques were able to quantify 32 pesticides, 62 PCPPs, and 12 EDCs in reverse osmosis concentrate. However, these chemicals could explain only 1% of the nonspecific toxicity in the Microtox assay in the reverse osmosis concentrate and 0.0025% in the treated water. Likewise only 1% of the estrogenic effect in the E-SCREEN could be explained by the quantified EDCs after reverse osmosis. In comparison, >50% of the estrogenic effect can typically be explained in sewage. Herbicidal activity could be fully explained by chemical analysis as the sampling period coincided with an illegal discharge and two herbicides dominated the mixture effect. The mass balance of the reverse osmosis process matched theoretical expectations for both chemical analysis and bioanalytical tools. Overall the investigated treatment train removed >97% estrogenicity, >99% herbicidal activity, and >96% baseline toxicity, confirming the suitability of the treatment train for polishing water for indirect potable reuse. The product water was indistinguishable from local tap water in all three bioassays. This study demonstrates the suitability and robustness of passive sampling linked with bioanalytical tools for semicontinuous monitoring of advanced water treatment with respect to micropollutant removal." @default.
- W2000707950 created "2016-06-24" @default.
- W2000707950 creator A5019740923 @default.
- W2000707950 creator A5020329707 @default.
- W2000707950 creator A5021318219 @default.
- W2000707950 creator A5059385840 @default.
- W2000707950 creator A5062608854 @default.
- W2000707950 creator A5063830588 @default.
- W2000707950 creator A5070858641 @default.
- W2000707950 creator A5089520065 @default.
- W2000707950 date "2011-05-25" @default.
- W2000707950 modified "2023-09-23" @default.
- W2000707950 title "Evaluation of Contaminant Removal of Reverse Osmosis and Advanced Oxidation in Full-Scale Operation by Combining Passive Sampling with Chemical Analysis and Bioanalytical Tools" @default.
- W2000707950 cites W1972553482 @default.
- W2000707950 cites W1984707744 @default.
- W2000707950 cites W1990826530 @default.
- W2000707950 cites W1993210636 @default.
- W2000707950 cites W1994169557 @default.
- W2000707950 cites W1994628073 @default.
- W2000707950 cites W2002481914 @default.
- W2000707950 cites W2002519757 @default.
- W2000707950 cites W2005654190 @default.
- W2000707950 cites W2012892759 @default.
- W2000707950 cites W2012923483 @default.
- W2000707950 cites W2025533533 @default.
- W2000707950 cites W2038058124 @default.
- W2000707950 cites W2038522804 @default.
- W2000707950 cites W2040609564 @default.
- W2000707950 cites W2041023039 @default.
- W2000707950 cites W2046983261 @default.
- W2000707950 cites W2050779588 @default.
- W2000707950 cites W2072274571 @default.
- W2000707950 cites W2082575551 @default.
- W2000707950 cites W2086157028 @default.
- W2000707950 cites W2095152635 @default.
- W2000707950 cites W2095215207 @default.
- W2000707950 cites W2112401267 @default.
- W2000707950 cites W2118497466 @default.
- W2000707950 cites W2132217230 @default.
- W2000707950 cites W2149189609 @default.
- W2000707950 cites W2155423098 @default.
- W2000707950 cites W2162233418 @default.
- W2000707950 cites W2163762886 @default.
- W2000707950 doi "https://doi.org/10.1021/es201153k" @default.
- W2000707950 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21612211" @default.
- W2000707950 hasPublicationYear "2011" @default.
- W2000707950 type Work @default.
- W2000707950 sameAs 2000707950 @default.
- W2000707950 citedByCount "64" @default.
- W2000707950 countsByYear W20007079502012 @default.
- W2000707950 countsByYear W20007079502013 @default.
- W2000707950 countsByYear W20007079502014 @default.
- W2000707950 countsByYear W20007079502015 @default.
- W2000707950 countsByYear W20007079502016 @default.
- W2000707950 countsByYear W20007079502017 @default.
- W2000707950 countsByYear W20007079502018 @default.
- W2000707950 countsByYear W20007079502019 @default.
- W2000707950 countsByYear W20007079502020 @default.
- W2000707950 countsByYear W20007079502021 @default.
- W2000707950 countsByYear W20007079502022 @default.
- W2000707950 countsByYear W20007079502023 @default.
- W2000707950 crossrefType "journal-article" @default.
- W2000707950 hasAuthorship W2000707950A5019740923 @default.
- W2000707950 hasAuthorship W2000707950A5020329707 @default.
- W2000707950 hasAuthorship W2000707950A5021318219 @default.
- W2000707950 hasAuthorship W2000707950A5059385840 @default.
- W2000707950 hasAuthorship W2000707950A5062608854 @default.
- W2000707950 hasAuthorship W2000707950A5063830588 @default.
- W2000707950 hasAuthorship W2000707950A5070858641 @default.
- W2000707950 hasAuthorship W2000707950A5089520065 @default.
- W2000707950 hasConcept C104488531 @default.
- W2000707950 hasConcept C107872376 @default.
- W2000707950 hasConcept C112570922 @default.
- W2000707950 hasConcept C130797344 @default.
- W2000707950 hasConcept C137535248 @default.
- W2000707950 hasConcept C147455438 @default.
- W2000707950 hasConcept C147852310 @default.
- W2000707950 hasConcept C161176658 @default.
- W2000707950 hasConcept C178790620 @default.
- W2000707950 hasConcept C185592680 @default.
- W2000707950 hasConcept C18903297 @default.
- W2000707950 hasConcept C197471484 @default.
- W2000707950 hasConcept C2778659605 @default.
- W2000707950 hasConcept C2779595939 @default.
- W2000707950 hasConcept C2780797713 @default.
- W2000707950 hasConcept C39432304 @default.
- W2000707950 hasConcept C41625074 @default.
- W2000707950 hasConcept C43617362 @default.
- W2000707950 hasConcept C54355233 @default.
- W2000707950 hasConcept C55493867 @default.
- W2000707950 hasConcept C6557445 @default.
- W2000707950 hasConcept C86803240 @default.
- W2000707950 hasConcept C87717796 @default.
- W2000707950 hasConceptScore W2000707950C104488531 @default.
- W2000707950 hasConceptScore W2000707950C107872376 @default.
- W2000707950 hasConceptScore W2000707950C112570922 @default.
- W2000707950 hasConceptScore W2000707950C130797344 @default.
- W2000707950 hasConceptScore W2000707950C137535248 @default.