Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000712072> ?p ?o ?g. }
- W2000712072 endingPage "119" @default.
- W2000712072 startingPage "79" @default.
- W2000712072 abstract "This paper describes our methodology for building conformant planners, which is based on recent advances in the theory of action and change and answer set programming. The development of a planner for a given dynamic domain starts with encoding the knowledge about fluents and actions of the domain as an action theory D of some action language. Our choice in this paper is AL – an action language with dynamic and static causal laws and executability conditions. An action theory D of AL defines a transition diagram T ( D ) containing all the possible trajectories of the domain. A transition 〈 s , a , s ′ 〉 belongs to T ( D ) iff the execution of the action a in the state s may move the domain to the state s ′ . The second step in the planner development consists in finding a deterministic transition diagram T l p ( D ) such that nodes of T l p ( D ) are partial states of D , its arcs are labeled by actions, and a path in T l p ( D ) from an initial partial state δ 0 to a partial state satisfying the goal δ f corresponds to a conformant plan for δ 0 and δ f in T ( D ) . The transition diagram T l p ( D ) is called an ‘approximation’ of T ( D ) . We claim that a concise description of an approximation of T ( D ) can often be given by a logic program π ( D ) under the answer sets semantics. Moreover, complex initial situations and constraints on plans can be also expressed by logic programming rules and included in π ( D ) . If this is possible then the problem of finding a parallel or sequential conformant plan can be reduced to computing answer sets of π ( D ) . This can be done by general purpose answer set solvers. If plans are sequential and long then this method can be too time consuming. In this case, π ( D ) is used as a specification for a procedural graph searching conformant planning algorithm. The paper illustrates this methodology by building several conformant planners which work for domains with complex relationship between the fluents. The efficiency of the planners is experimentally evaluated on a number of new and old benchmarks. In addition we show that for a subclass of action theories of AL our planners are complete, i.e., if in T l p ( D ) we cannot get from δ 0 to a state satisfying the goal δ f then there is no conformant plan for δ 0 and δ f in T ( D ) ." @default.
- W2000712072 created "2016-06-24" @default.
- W2000712072 creator A5019454326 @default.
- W2000712072 creator A5029745883 @default.
- W2000712072 creator A5039040712 @default.
- W2000712072 creator A5063459912 @default.
- W2000712072 date "2011-01-01" @default.
- W2000712072 modified "2023-10-17" @default.
- W2000712072 title "Approximation of action theories and its application to conformant planning" @default.
- W2000712072 cites W1505436358 @default.
- W2000712072 cites W1515684991 @default.
- W2000712072 cites W1545688112 @default.
- W2000712072 cites W1986006371 @default.
- W2000712072 cites W1987080413 @default.
- W2000712072 cites W1992992996 @default.
- W2000712072 cites W1993512664 @default.
- W2000712072 cites W1994226409 @default.
- W2000712072 cites W1998668381 @default.
- W2000712072 cites W2007116259 @default.
- W2000712072 cites W2009810952 @default.
- W2000712072 cites W2011124182 @default.
- W2000712072 cites W2017128525 @default.
- W2000712072 cites W2025008902 @default.
- W2000712072 cites W2025327371 @default.
- W2000712072 cites W2038967932 @default.
- W2000712072 cites W2071617280 @default.
- W2000712072 cites W2092211394 @default.
- W2000712072 cites W2121898615 @default.
- W2000712072 cites W2139771194 @default.
- W2000712072 cites W2141088850 @default.
- W2000712072 cites W2154595228 @default.
- W2000712072 cites W3103056503 @default.
- W2000712072 cites W4243058225 @default.
- W2000712072 doi "https://doi.org/10.1016/j.artint.2010.04.007" @default.
- W2000712072 hasPublicationYear "2011" @default.
- W2000712072 type Work @default.
- W2000712072 sameAs 2000712072 @default.
- W2000712072 citedByCount "36" @default.
- W2000712072 countsByYear W20007120722012 @default.
- W2000712072 countsByYear W20007120722013 @default.
- W2000712072 countsByYear W20007120722014 @default.
- W2000712072 countsByYear W20007120722015 @default.
- W2000712072 countsByYear W20007120722017 @default.
- W2000712072 countsByYear W20007120722019 @default.
- W2000712072 countsByYear W20007120722020 @default.
- W2000712072 countsByYear W20007120722021 @default.
- W2000712072 countsByYear W20007120722022 @default.
- W2000712072 countsByYear W20007120722023 @default.
- W2000712072 crossrefType "journal-article" @default.
- W2000712072 hasAuthorship W2000712072A5019454326 @default.
- W2000712072 hasAuthorship W2000712072A5029745883 @default.
- W2000712072 hasAuthorship W2000712072A5039040712 @default.
- W2000712072 hasAuthorship W2000712072A5063459912 @default.
- W2000712072 hasBestOaLocation W20007120722 @default.
- W2000712072 hasConcept C11413529 @default.
- W2000712072 hasConcept C118615104 @default.
- W2000712072 hasConcept C121332964 @default.
- W2000712072 hasConcept C128838566 @default.
- W2000712072 hasConcept C134306372 @default.
- W2000712072 hasConcept C154945302 @default.
- W2000712072 hasConcept C177264268 @default.
- W2000712072 hasConcept C184337299 @default.
- W2000712072 hasConcept C186399060 @default.
- W2000712072 hasConcept C199360897 @default.
- W2000712072 hasConcept C22497172 @default.
- W2000712072 hasConcept C2776999362 @default.
- W2000712072 hasConcept C2779167558 @default.
- W2000712072 hasConcept C2780791683 @default.
- W2000712072 hasConcept C33923547 @default.
- W2000712072 hasConcept C36503486 @default.
- W2000712072 hasConcept C37404715 @default.
- W2000712072 hasConcept C41008148 @default.
- W2000712072 hasConcept C48103436 @default.
- W2000712072 hasConcept C62520636 @default.
- W2000712072 hasConcept C77088390 @default.
- W2000712072 hasConcept C80444323 @default.
- W2000712072 hasConceptScore W2000712072C11413529 @default.
- W2000712072 hasConceptScore W2000712072C118615104 @default.
- W2000712072 hasConceptScore W2000712072C121332964 @default.
- W2000712072 hasConceptScore W2000712072C128838566 @default.
- W2000712072 hasConceptScore W2000712072C134306372 @default.
- W2000712072 hasConceptScore W2000712072C154945302 @default.
- W2000712072 hasConceptScore W2000712072C177264268 @default.
- W2000712072 hasConceptScore W2000712072C184337299 @default.
- W2000712072 hasConceptScore W2000712072C186399060 @default.
- W2000712072 hasConceptScore W2000712072C199360897 @default.
- W2000712072 hasConceptScore W2000712072C22497172 @default.
- W2000712072 hasConceptScore W2000712072C2776999362 @default.
- W2000712072 hasConceptScore W2000712072C2779167558 @default.
- W2000712072 hasConceptScore W2000712072C2780791683 @default.
- W2000712072 hasConceptScore W2000712072C33923547 @default.
- W2000712072 hasConceptScore W2000712072C36503486 @default.
- W2000712072 hasConceptScore W2000712072C37404715 @default.
- W2000712072 hasConceptScore W2000712072C41008148 @default.
- W2000712072 hasConceptScore W2000712072C48103436 @default.
- W2000712072 hasConceptScore W2000712072C62520636 @default.
- W2000712072 hasConceptScore W2000712072C77088390 @default.
- W2000712072 hasConceptScore W2000712072C80444323 @default.