Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000729580> ?p ?o ?g. }
- W2000729580 endingPage "194" @default.
- W2000729580 startingPage "194" @default.
- W2000729580 abstract "Environmental context Fine particulate matter (PM2.5) in the Earth’s atmosphere plays an important role in climate change and human health, in which secondary organic aerosol (SOA) that forms from the photooxidation of volatile organic compounds (VOCs) has a significant contribution. SOA derived from isoprene, the most abundant non-methane VOC emitted into the Earth’s atmosphere, has been widely studied to interpret its formation mechanisms. However, the ability to predict isoprene SOA using current models remains difficult due to the lack of understanding of isoprene chemistry. Abstract Secondary organic aerosol (SOA) formation from the photooxidation of isoprene was simulated against smog chamber experiments with varied concentrations of isoprene, nitrogen oxides (NOx=NO + NO2) and ammonium sulfate seed aerosols. A semi-condensed gas-phase isoprene chemical mechanism (ISO-UNC) was coupled with different aerosol-phase modelling frameworks to simulate SOA formation, including: (1) the Odum two-product approach, (2) the 1-D volatility basis-set (VBS) approach and (3) a new condensed kinetic model based upon the gas-particle partitioning theory and reactive uptake processes. The first two approaches are based upon empirical parameterisations from previous studies. The kinetic model uses a gas-phase mechanism to explicitly predict the major intermediate precursors, namely the isoprene-derived epoxides, and hence simulate SOA formation. In general, they all tend to significantly over predict SOA formation when semivolatile concentrations are higher because more semivolatiles are forced to produce SOA in the models to maintain gas-particle equilibrium; yet the data indicate otherwise. Consequently, modified dynamic parameterised models, assuming non-equilibrium partitioning, were incorporated and could improve the model performance. In addition, the condensed kinetic model was expanded by including an uptake limitation representation so that reactive uptake processes slow down or even stop; this assumes reactive uptake reactions saturate seed aerosols. The results from this study suggest that isoprene SOA formation by reactive uptake of gas-phase precursors is likely limited by certain particle-phase features, and at high gas-phase epoxide levels, gas-particle equilibrium is not obtained. The real cause of the limitation needs further investigation; however, the modified kinetic model in this study could tentatively be incorporated in large-scale SOA models given its predictive ability." @default.
- W2000729580 created "2016-06-24" @default.
- W2000729580 creator A5015354504 @default.
- W2000729580 creator A5031313025 @default.
- W2000729580 creator A5039428029 @default.
- W2000729580 creator A5046165776 @default.
- W2000729580 creator A5047570446 @default.
- W2000729580 creator A5080129434 @default.
- W2000729580 date "2013-01-01" @default.
- W2000729580 modified "2023-09-26" @default.
- W2000729580 title "Modelling of secondary organic aerosol formation from isoprene photooxidation chamber studies using different approaches" @default.
- W2000729580 cites W1964220885 @default.
- W2000729580 cites W1964406071 @default.
- W2000729580 cites W1966609764 @default.
- W2000729580 cites W1966779205 @default.
- W2000729580 cites W1968862760 @default.
- W2000729580 cites W1971205864 @default.
- W2000729580 cites W1972587396 @default.
- W2000729580 cites W1978848700 @default.
- W2000729580 cites W1982969719 @default.
- W2000729580 cites W1983876127 @default.
- W2000729580 cites W1985285121 @default.
- W2000729580 cites W1986262320 @default.
- W2000729580 cites W1991199950 @default.
- W2000729580 cites W1993717574 @default.
- W2000729580 cites W1996244042 @default.
- W2000729580 cites W1996590278 @default.
- W2000729580 cites W2002570697 @default.
- W2000729580 cites W2005422141 @default.
- W2000729580 cites W2011614488 @default.
- W2000729580 cites W2012922017 @default.
- W2000729580 cites W2015744350 @default.
- W2000729580 cites W2021137726 @default.
- W2000729580 cites W2021636429 @default.
- W2000729580 cites W2031457789 @default.
- W2000729580 cites W2034838692 @default.
- W2000729580 cites W2035014908 @default.
- W2000729580 cites W2035618697 @default.
- W2000729580 cites W2038858025 @default.
- W2000729580 cites W2039437298 @default.
- W2000729580 cites W2043648557 @default.
- W2000729580 cites W2048640559 @default.
- W2000729580 cites W2048817008 @default.
- W2000729580 cites W2049411469 @default.
- W2000729580 cites W2052254965 @default.
- W2000729580 cites W2054226608 @default.
- W2000729580 cites W2063725653 @default.
- W2000729580 cites W2066887109 @default.
- W2000729580 cites W2067157510 @default.
- W2000729580 cites W2068968932 @default.
- W2000729580 cites W2076112917 @default.
- W2000729580 cites W2090646981 @default.
- W2000729580 cites W2093522456 @default.
- W2000729580 cites W2097806302 @default.
- W2000729580 cites W2102708663 @default.
- W2000729580 cites W2109419617 @default.
- W2000729580 cites W2122054302 @default.
- W2000729580 cites W2122574093 @default.
- W2000729580 cites W2127281457 @default.
- W2000729580 cites W2127814074 @default.
- W2000729580 cites W2127945798 @default.
- W2000729580 cites W2133263939 @default.
- W2000729580 cites W2135497701 @default.
- W2000729580 cites W2141507669 @default.
- W2000729580 cites W2143933846 @default.
- W2000729580 cites W2144923407 @default.
- W2000729580 cites W2145651246 @default.
- W2000729580 cites W2158364374 @default.
- W2000729580 cites W2158955296 @default.
- W2000729580 cites W2160060603 @default.
- W2000729580 cites W2163510770 @default.
- W2000729580 cites W2171810356 @default.
- W2000729580 cites W2334088731 @default.
- W2000729580 cites W4237309466 @default.
- W2000729580 doi "https://doi.org/10.1071/en13029" @default.
- W2000729580 hasPublicationYear "2013" @default.
- W2000729580 type Work @default.
- W2000729580 sameAs 2000729580 @default.
- W2000729580 citedByCount "6" @default.
- W2000729580 countsByYear W20007295802013 @default.
- W2000729580 countsByYear W20007295802015 @default.
- W2000729580 countsByYear W20007295802016 @default.
- W2000729580 countsByYear W20007295802017 @default.
- W2000729580 countsByYear W20007295802019 @default.
- W2000729580 crossrefType "journal-article" @default.
- W2000729580 hasAuthorship W2000729580A5015354504 @default.
- W2000729580 hasAuthorship W2000729580A5031313025 @default.
- W2000729580 hasAuthorship W2000729580A5039428029 @default.
- W2000729580 hasAuthorship W2000729580A5046165776 @default.
- W2000729580 hasAuthorship W2000729580A5047570446 @default.
- W2000729580 hasAuthorship W2000729580A5080129434 @default.
- W2000729580 hasConcept C105923489 @default.
- W2000729580 hasConcept C107872376 @default.
- W2000729580 hasConcept C151730666 @default.
- W2000729580 hasConcept C15920480 @default.
- W2000729580 hasConcept C178790620 @default.
- W2000729580 hasConcept C185592680 @default.
- W2000729580 hasConcept C203032635 @default.