Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000735480> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2000735480 endingPage "990" @default.
- W2000735480 startingPage "985" @default.
- W2000735480 abstract "A commutative curve ( f 0 ) ∈ k [ x 1 , … , x n ] has many noncommutative models, i.e. f ∈ k 〈 x 1 , … , x n 〉 having f 0 as its image by the canonical epimorphism κ from k 〈 x 1 , … , x n 〉 to k [ x 1 , … , x n ] . In this note we consider the cases, where n = 2 . If the polymomial f 0 has an irreducible factor, g 0 , then in terms of conditions on the noncommutative models of ( f 0 ) , we determine, when g 0 2 is a factor of f 0 . In fact we prove that in case there exists a noncommutative model f of f 0 such that Ext A 1 ( P , Q ) ≠ 0 for all point P , Q ∈ Z ( f 0 ) , where A = k 〈 x , y 〉 / ( f ) , then g 0 2 is a factor of f 0 . We also note that the “converse” result holds. Next we apply the methods from above to show that in case an element f in the free algebra has 2 essential different factorizations f = gh = h 1 g ′ h 2 , where g 0 = g 0 ′ and with g 0 irreducible and prime to h 0 , then Z ( g 0 ) ∩ Z ( ( h 1 ) 0 ) = ∅ , i.e. g 0 and ( h 1 ) 0 do not have a common zero." @default.
- W2000735480 created "2016-06-24" @default.
- W2000735480 creator A5082610667 @default.
- W2000735480 date "2009-08-01" @default.
- W2000735480 modified "2023-09-26" @default.
- W2000735480 title "Factorization in noncommutative curves" @default.
- W2000735480 cites W2012720455 @default.
- W2000735480 cites W2073761272 @default.
- W2000735480 cites W2095518600 @default.
- W2000735480 doi "https://doi.org/10.1016/j.laa.2009.03.050" @default.
- W2000735480 hasPublicationYear "2009" @default.
- W2000735480 type Work @default.
- W2000735480 sameAs 2000735480 @default.
- W2000735480 citedByCount "1" @default.
- W2000735480 countsByYear W20007354802015 @default.
- W2000735480 crossrefType "journal-article" @default.
- W2000735480 hasAuthorship W2000735480A5082610667 @default.
- W2000735480 hasBestOaLocation W20007354801 @default.
- W2000735480 hasConcept C11413529 @default.
- W2000735480 hasConcept C136119220 @default.
- W2000735480 hasConcept C187834632 @default.
- W2000735480 hasConcept C202444582 @default.
- W2000735480 hasConcept C33923547 @default.
- W2000735480 hasConcept C68797384 @default.
- W2000735480 hasConceptScore W2000735480C11413529 @default.
- W2000735480 hasConceptScore W2000735480C136119220 @default.
- W2000735480 hasConceptScore W2000735480C187834632 @default.
- W2000735480 hasConceptScore W2000735480C202444582 @default.
- W2000735480 hasConceptScore W2000735480C33923547 @default.
- W2000735480 hasConceptScore W2000735480C68797384 @default.
- W2000735480 hasIssue "5-7" @default.
- W2000735480 hasLocation W20007354801 @default.
- W2000735480 hasOpenAccess W2000735480 @default.
- W2000735480 hasPrimaryLocation W20007354801 @default.
- W2000735480 hasRelatedWork W1660943910 @default.
- W2000735480 hasRelatedWork W1974769824 @default.
- W2000735480 hasRelatedWork W2031889345 @default.
- W2000735480 hasRelatedWork W2056026903 @default.
- W2000735480 hasRelatedWork W2059804772 @default.
- W2000735480 hasRelatedWork W2326718950 @default.
- W2000735480 hasRelatedWork W2963730847 @default.
- W2000735480 hasRelatedWork W2964072954 @default.
- W2000735480 hasRelatedWork W2964313278 @default.
- W2000735480 hasRelatedWork W3084333948 @default.
- W2000735480 hasVolume "431" @default.
- W2000735480 isParatext "false" @default.
- W2000735480 isRetracted "false" @default.
- W2000735480 magId "2000735480" @default.
- W2000735480 workType "article" @default.