Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000743735> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2000743735 abstract "Abstract This paper presents a framework for analyzing three phase flow experiments in porous media. We analyze previously published data from a dynamic displacement experiment, where three phase relative permeabilities have been measured. The relative permeability of each phase is, to a good approximation, a polynomial function of the saturation of that phase. Then analytically, we calculate the saturation paths and recovery for the experiments using the method of characteristics. The predicted paths agree well with the experimental measurements, and with one-dimensional numerical solutions. Introduction The simultaneous flow of three immiscible fluids in porous media is an essential component of enhanced oil recovery and aquifer remediation processes. It is important to understand three phase flow for designing optimum methods for recovering oil by gas injection, gas gravity drainage, surfactant flooding and thermal recovery. Although three phase flow experiments are hard to perform, there are many published studies. Grader and O'Meara performed dynamic displacement experiments using three immiscible fluids. Virnovsky and Grader and O'Meara developed a theory to obtain three phase relative permeability as a function of saturation by an extension of the Welge and JBN methods to three phases. Siddiqui et. al verified the theory using X-ray computerized tomography to obtain in-situ saturations for three phase dynamic displacement experiments. Sarem obtained three phase relative permeability by unsteady state displacement experiments assuming that relative permeability of each phase was a function of its own saturation. Oak et. al presented a steady-state study of three phase relative permeability using fired Berea cores. Minssieux and Duquerroix analyzed water alternating gas experiments in porous media with residual oil. Three phase gravity drainage experiments have shown that it is possible to obtain very low residual oil saturations. Vizika and Lombard studied the effects of wettability and spreading characteristics of the fluid system in three phase gravity drainage. Skurdal et. al analyzed gas gravity drainage experiments using spreading and non-spreading systems under oil wet, water wet and mixed wet conditions. Naylor et. al performed gravity drainage experiments by measuring insitu oil and brine saturations using a radioactive tracer technique. Chalier et. al used a gamma-ray absorption technique to obtain three phase relative permeability for tertiary gas gravity drainage experiments. Skauge et. al summarized results from gas gravity drainage experiments at different water saturations. Espie et. al established and interpreted laboratory data quantifying the dynamics of oil bank growth during the waterflood/gravity drainage interaction in Prudhoe Bay cores. In three phase flow, oil may form layers in crevices and roughness of the pore space, between water and gas. It is the drainage of these layers that is responsible for the good recoveries observed in gravity drainage experiments (Blunt et. al). Although the residual oil saturation is very low, the relative permeability at low oil saturations may also be very small, making gas injection schemes uneconomic over any reasonable time scale. It is therefore important to have a good understanding of the three phase relative permeability, especially at low oil saturation. Most numerical models of three phase flow in porous media use empirical relationships for capillary pressure and relative permeability. Delshad and Pope, Oak and Fayers and Matthews compared empirical models to published experimental data and showed that in most cases the empirical models fail to match the measurements. P. 791" @default.
- W2000743735 created "2016-06-24" @default.
- W2000743735 creator A5041906336 @default.
- W2000743735 creator A5049632458 @default.
- W2000743735 creator A5082597658 @default.
- W2000743735 date "1996-10-06" @default.
- W2000743735 modified "2023-09-27" @default.
- W2000743735 title "Theoretical Analysis of Three Phase Flow Experiments in Porous Media" @default.
- W2000743735 doi "https://doi.org/10.2118/36664-ms" @default.
- W2000743735 hasPublicationYear "1996" @default.
- W2000743735 type Work @default.
- W2000743735 sameAs 2000743735 @default.
- W2000743735 citedByCount "23" @default.
- W2000743735 crossrefType "proceedings-article" @default.
- W2000743735 hasAuthorship W2000743735A5041906336 @default.
- W2000743735 hasAuthorship W2000743735A5049632458 @default.
- W2000743735 hasAuthorship W2000743735A5082597658 @default.
- W2000743735 hasConcept C105569014 @default.
- W2000743735 hasConcept C113378726 @default.
- W2000743735 hasConcept C114614502 @default.
- W2000743735 hasConcept C120882062 @default.
- W2000743735 hasConcept C121332964 @default.
- W2000743735 hasConcept C127313418 @default.
- W2000743735 hasConcept C144308804 @default.
- W2000743735 hasConcept C185592680 @default.
- W2000743735 hasConcept C187320778 @default.
- W2000743735 hasConcept C192562407 @default.
- W2000743735 hasConcept C2779379648 @default.
- W2000743735 hasConcept C2779681308 @default.
- W2000743735 hasConcept C33923547 @default.
- W2000743735 hasConcept C38349280 @default.
- W2000743735 hasConcept C41625074 @default.
- W2000743735 hasConcept C55493867 @default.
- W2000743735 hasConcept C57879066 @default.
- W2000743735 hasConcept C6648577 @default.
- W2000743735 hasConcept C75622301 @default.
- W2000743735 hasConcept C76177295 @default.
- W2000743735 hasConcept C78762247 @default.
- W2000743735 hasConcept C97355855 @default.
- W2000743735 hasConcept C9930424 @default.
- W2000743735 hasConceptScore W2000743735C105569014 @default.
- W2000743735 hasConceptScore W2000743735C113378726 @default.
- W2000743735 hasConceptScore W2000743735C114614502 @default.
- W2000743735 hasConceptScore W2000743735C120882062 @default.
- W2000743735 hasConceptScore W2000743735C121332964 @default.
- W2000743735 hasConceptScore W2000743735C127313418 @default.
- W2000743735 hasConceptScore W2000743735C144308804 @default.
- W2000743735 hasConceptScore W2000743735C185592680 @default.
- W2000743735 hasConceptScore W2000743735C187320778 @default.
- W2000743735 hasConceptScore W2000743735C192562407 @default.
- W2000743735 hasConceptScore W2000743735C2779379648 @default.
- W2000743735 hasConceptScore W2000743735C2779681308 @default.
- W2000743735 hasConceptScore W2000743735C33923547 @default.
- W2000743735 hasConceptScore W2000743735C38349280 @default.
- W2000743735 hasConceptScore W2000743735C41625074 @default.
- W2000743735 hasConceptScore W2000743735C55493867 @default.
- W2000743735 hasConceptScore W2000743735C57879066 @default.
- W2000743735 hasConceptScore W2000743735C6648577 @default.
- W2000743735 hasConceptScore W2000743735C75622301 @default.
- W2000743735 hasConceptScore W2000743735C76177295 @default.
- W2000743735 hasConceptScore W2000743735C78762247 @default.
- W2000743735 hasConceptScore W2000743735C97355855 @default.
- W2000743735 hasConceptScore W2000743735C9930424 @default.
- W2000743735 hasLocation W20007437351 @default.
- W2000743735 hasOpenAccess W2000743735 @default.
- W2000743735 hasPrimaryLocation W20007437351 @default.
- W2000743735 hasRelatedWork W1972015612 @default.
- W2000743735 hasRelatedWork W1985883314 @default.
- W2000743735 hasRelatedWork W2083258658 @default.
- W2000743735 hasRelatedWork W2361062833 @default.
- W2000743735 hasRelatedWork W2728276482 @default.
- W2000743735 hasRelatedWork W2884657010 @default.
- W2000743735 hasRelatedWork W2902420615 @default.
- W2000743735 hasRelatedWork W2911598369 @default.
- W2000743735 hasRelatedWork W2980604171 @default.
- W2000743735 hasRelatedWork W2998793186 @default.
- W2000743735 isParatext "false" @default.
- W2000743735 isRetracted "false" @default.
- W2000743735 magId "2000743735" @default.
- W2000743735 workType "article" @default.